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Chapter 1

Introduction

The potential of sustained hypersonic flight to revolutionize military and commercial activ-
ity is well recognized, and is reflected in recent initiatives such as the National Aerospace
Initiative. High-speed vehicles will substantially impact military strategy by providing new
defensive options such as a rapid on-demand global strike capability with much shorter re-
sponse times than currently possible. Furthermore, the development of new technologies
based on air-breathing propulsion can be leveraged to considerably reduce the cost of access-
to-space, the benefits of which are both military as well as commercial.

However, daunting technical challenges remain in realizing such vehicles. The harsh
environment imposed by the envelope of such future missions is manifested in the severe
anticipated thermo-mechanical loads and various propulsion-related requirements. Although
the diversity of the physical phenomena encountered is broad, several key limiting issues have
been identified as primary challenges, including both local and global constraints such as,
for example, cowl lip loading and airframe balance. A scrutiny of the problems identified
reveals the pervasive importance of several basic fluid dynamic phenomena. One of these,
and possibly the least understood, is that of high-speed transition.

In the present report, the main results stemming from research supported by AFOSR
grant are presented. The theoretical and computational studies of stability, transition and
flow control have been carried out with an emphasis on the multimode decomposition in-
cluding nonparallel flow effects. The multimode decomposition can serve to analysis of DNS
results for transitional boundary layers. Application of the multimode decomposition re-
quired re-evaluation of discrete modes branching and clarification of the terminology issues.
Effect of chemical reactions in binary mixtures of oxygen and nitrogen has been studied
within the inviscid stability analysis. In addition to the studies of high-speed boundary
layers, fundamental aspects were addressed to evaluate fundamentals of global (bi-global)
stability concept.

The principal investigator is thankful to Prof. A. Fedorov, Prof. X. Zhong, Dr. J.
Klentzman, Dr. X. Wang, Mr. E. Ulker for their significant input into this three-year
project.
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The results have been published in Encyclopedia of Aerospace Engineering, 1 journal
paper and in 5 conference publications.

Encyclopedia of Aerospace Engineering

1. A. Tumin, Flow Instabilities and Transition, in Encyclopedia of Aerospace Engineering,
R. Blocley and W. Shyy (eds), John Wiley & Sons Ltd, Chichester, UK, pp. 139-150

Journal Paper

1. A. Tumin, X. Wang, and X. Zhong, Numerical Simulation and Theoretical Analysis of
Perturbations in Hypersonic Boundary Layers, AIAA J, Vol. 49, No. 3, 2011.

Conference publications

1. A. Tumin, X. Wang, and X. Zhong, Numerical Simulation and Theoretical Analysis on
Hypersonic Boundary-Layer Receptivity to Wall Blowing-Suction, Orlando FL, AIAA
Paper 2010-0534, 2010.

2. A. Fedorov and A. Tumin, Branching of Discrete Modes in High-Speed Boundary
Layers and Terminology Issues, Chicago IL, AIAA Paper 2010-5003, 2010.

3. E. Ulker, J. Klentzman, and A. Tumin, Stability of Boundary Layers in Binary Mixtures
of Oxygen and Nitrogen, Orlando FL, AIAA Paper 2011-0370, 2011.

4. A. Tumin, X. Wang, and X. Zhong, Direct Numerical Simulation and Theoretical Anal-
ysis of Perturbations in Hypersonic Boundary Layers, in Seventh IUTAM Symposium
on Laminar-Turbulent Transition, Proceedings of the Seventh IUTAM Symposium on
Laminar-Turbulent Transition, Stockholm, Sweden, 2009, Springer, 2010, pp. 427-432.

5. A. Tumin, Toward the Foundation of a Global (Bi-Global) Modes Concept, in Global
Flow Instability and Control-IV, Creta Maris, Hersinissos, Crete, Sept 28-Oct 2, 2009,
V. Theofilis, T. Colonius, and A. Seifert eds., ISBN-13: 978-84-692-6247-4
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Chapter 2

Numerical simulation and theoretical
analysis on hypersonic boundary-layer
receptivity to wall blowing-suction

This section is based on the results published in colaboration with X. Wang and X. Zhong
[TWZ10, TWZ11]

2.1 Introduction

The progress being made in computational fluid dynamics provides an opportunity for reli-
able simulations of such complex phenomena as laminar-turbulent transition. The dynam-
ics of flow transition depends on the instability of small perturbations excited by external
sources. Computational results provide complete information about the flow field that would
be impossible to measure in real experiments.

Recently, a method of normal mode decomposition was developed for two- and three-
dimensional perturbations in compressible and incompressible boundary layers[Tum03, GT04,
Tum07]. In Ref. [TWZ07], the method was applied to the theoretical analysis of a pertur-
bation flow field in the vicinity of a blowing-suction actuator obtained from direct numerical
simulation (DNS). The results demonstrated very good agreement between the amplitudes of
the modes filtered out from the DNS data and those solved by linear theory of the flow recep-
tivity to wall blowing-suction. However, the development of the perturbations downstream
from the actuator has not been analyzed yet.

Perturbations observed in experiments and computations in the vicinity of an actuator
possess a nonmonotonic character. This behavior occurs because the perturbation intro-
duced by the actuator is composed of modes of the discrete (unstable and stable modes) and
continuous spectra, and one cannot distinguish the unstable mode clearly. Are the observa-
tions still compatible with the linear stability theory (LST)? In order to answer this question,
we must decompose the perturbation into the normal modes and compare their amplitudes
with those predicted by LST. However, the LST prediction must take into account the non-
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parallel boundary-layer flow effects because the development of the perturbation takes place
on a length scale much larger than the boundary-layer thickness.

The nonparallel flow effects on the development of unstable discrete modes on a length
scale that is much larger than the boundary-layer thickness have been studied within the
scope of the method of multiple scales [Bou72, Gas74, SN75, SN77, PN79, Gap80, Nay80,
EH80, TF82] (MMS). Another method that allows inclusion of the nonparallel flow effects
on unstable modes is based on the parabolized stability equations [HB87, Ber91, Her97]
(PSE). Fedorov and Khokhlov [FK01] pointed out that the role of decaying modes can be
significant, and one has must pay attention to them if there is a synchronism with the
other modes. Because the analysis of decaying modes is important, one must include the
nonparallel boundary-layer flow effects using the MMS.

In the present work, we apply the multimode decomposition to DNS results downstream
from the blowing-suction actuator in hypersonic boundary layers past a flat plate and a
sharp wedge to compare the amplitudes of the modes found from the computations with the
prediction of the linear stability theory including nonparallel flow effects.

2.2 Outline of the multimode decomposition

The method of multimode decomposition of perturbations having a prescribed frequency
is based on the biorthogonal eigenfunction system for linearized Navier-Stokes equations
[Tum07]. For the clarity of further discussion, we reproduce the main definitions necessary
for discussing the present work.

We consider a compressible two-dimensional boundary layer in Cartesian coordinates,
where x and z are the downstream and spanwise coordinates, respectively, and coordinate y
corresponds to the distance from the wall. We write the linearized Navier-Stokes equations
for a periodic-in-time perturbation (the frequency is equal to zero in the case of a roughness-
induced perturbation), ∼ exp (−iωt), in matrix form as

∂

∂y

(

L0
∂A

∂y

)

+ L1
∂A

∂y
= H1A + H2

∂A

∂x
+ H3

∂A

∂z
+ H4A, (2.1)

where vector A has 16 components

A (x, y, z) =(u, ∂u/∂y, v, π, θ, ∂θ/∂y, w, ∂w/∂y, ∂u/∂x, ∂v/∂x,

∂θ/∂x, ∂w/∂x, ∂u/∂z, ∂v/∂z, ∂θ/∂z, ∂w/∂z)T .
(2.2)

L0,L1,H1,H2,H3, and H4 are 16×16 matrices (their definitions are given in Ref. [Tum08]);
u, v, w, π, and θ represent three velocity components, pressure, and temperature perturba-
tions, respectively; and the superscript T in (2.2) stands for transpose. Matrix H4 originates
from the nonparallel character of the flow. It includes terms with the y-component of the
mean flow velocity and derivatives of the mean flow profiles with respect to the coordinate
x.

In the quasi-parallel flow approximation, the solution of the linearized Navier-Stokes
equations can be expanded into normal modes of the discrete and continuous spectra {Aαβ,Bαβ}
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[Tum07], where Aαβ and Bαβ are eigenfunctions of the direct and adjoint problems. Sub-
scripts α and β indicate the eigenfunctions corresponding to the streamwise, α, and spanwise,
β, wave numbers, respectively. The eigenfunction system {Aαβ,Bαβ} has an orthogonality
relation given as

〈H2Aαβ,Bα′β〉 ≡
∞
∫

0

(H2Aαβ,Bα′β)dy = Γ∆αα′ , (2.3)

where Γ is a normalization constant, ∆αα′ is a Kronecker delta if either α or α′ belongs to
the discrete spectrum, and ∆αα′ is a Dirac delta function if both α and α′ belong to the
continuous spectrum.

The orthogonality relation (2.3) can be used for decomposition of the DNS data at x = x0

into normal modes. After applying the Fourier transform in z, the data can be presented in
the form of a vector

Aβ0 (x0, y) =
∑

α

Cα (β)Aαβ (x0, y) , (2.4)

where
∑

stands for summation and integration over the discrete and continuous spectra,
respectively. Applying the orthogonality relation (2.3), one can find the coefficients Cα (β)
as follows:

Cα (β) =
〈H2Aβ0 (x0,y),Bα,β〉

Γ
. (2.5)

In the case of the transient growth phenomenon studied in experiments [Whi02, WE03,
FBTC04, WRE05, DW08] and DNS [FC04, RV07, SAD+09], the flow perturbation is given
only by modes of the continuous spectrum. The multimode decomposition has been applied
by Denissen and White [DW09] to the analysis of the DNS data of Rizzetta and Visbal
[RV07]. The authors demonstrated that the method can be utilized even when only partial
information in vector Aβ0 (x0, y) is available.

In a weakly nonparallel flow, one can employ the method of multiple scales (MMS) by
introducing fast (x) and slow (X = εx, ε ¿ 1) scales. The mean flow profiles depend on y
and X only, whereas the perturbation will depend on both length scales. In the case of a
discrete mode, the solution of the linearized Navier-Stokes equation is presented in the form

Aβ (x,X, y) =
[

Dν (X)A
(0)
ανβ (X, y) ei

R

αν(X)dx + εA
(1)
ανβ (X, y) ei

R

αν(X)dx + . . .
]

, (2.6)

where the function Dν (X) must be determined. After substitution of Eq. (2.6) into Eq.

(2.1), we arrive in order O(ε) at an inhomogeneous equation for A
(1)
ανβ. The solvability

condition of this equation allows for the finding of Dν (X) (details and relevant references
can be found in Ref. [Tum08]).
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2.3 Direct numerical simulation approach

In direct numerical simulation, the receptivity of hypersonic boundary layers over a flat plate
and a sharp wedge to wall blowing-suction are considered by solving the two-dimensional
compressible Navier-Stokes equations. Wall blowing-suction is introduced by a slot located
near the leading edge. In the assumption of thermally and calorically perfect gas flows, the
governing equations in conservative variables are given as

∂~U

∂t
+

∂

∂x
(~F1i + ~F1v) +

∂

∂y
(~F2i + ~F2v) = 0, (2.7)

where ~U is a column vector containing the conservative variables,

~U = {ρ, ρu, ρv, e}T . (2.8)

The flux vectors in (2.7) are divided into their inviscid and viscous components due to the

fact that the two components are discretized with different schemes. The components, ~F1i

and ~F2i, are inviscid flux whereas ~F1v and ~F2v are viscous flux components,

~Fji =









ρuj

ρuuj + p∆1j

ρvuj + p∆2j

uj(e+ p)









, (2.9)

~Fjv =









0
−τxxj

−τyxj

−τxkxj
uk −K ∂T

∂xj









, (2.10)

with j, k ∈ (1, 2). In Cartesian coordinates, x1 and u1 are defined in the streamwise direction
(x and u) whereas x2 and u2 are defined in the wall-normal direction (y and v).

Under the perfect gas assumption, pressure and energy are given by

p = ρRT, (2.11)

e = ρcvT +
ρ

2
(u2 + v2), (2.12)

where cv is the specific heat at constant volume. In the simulation, the viscosity coefficient, µ,
and the heat conductivity, K, are calculated using Sutherland’s law together with a constant
Prandtl number, Pr. They are both functions of temperature only.

µ = µr

(

T

Tr

)3/2
Tr + Ts

T + Ts

, (2.13)
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K =
µcp
Pr

, (2.14)

where µr = 1.7894 × 10−5 Ns/m2, Tr = 288.0 K, Ts = 110.33 K, and cp is the specific heat
at constant pressure.

The scales of velocity and length are the free-stream velocity U∞ and the Blasius length
scale, L = (µ∞x/ρ∞U∞)1/2. Since the length scale is changing along the flat plate, it is not
convenient to scale the frequency in terms of L/U∞. In stead, the frequency is scaled as
follows:

F =
2πfµ∞

ρ∞U2
∞

=
ωµ∞

ρ∞U2
∞

. (2.15)

In boundary layer analysis, the Reynolds number based on the Blasius length scale is gener-
ally used,

R =
ρ∞U∞L

µ∞

. (2.16)

In the present work, the fifth-order shock-fitting finite difference method of Zhong [Zho98]
is used to solve the governing equations in a domain bounded by the bow shock and the flat
plate (or wedge). In other words, the bow shock is treated as a boundary of the computational
domain. The Rankine-Hugoniot relations across the shock and a characteristic compatibility
relation coming from the downstream flow field are combined to solve for the flow variables
behind the shock. The shock-fitting method makes it possible for the Navier-Stokes equations
to be spatially discretized by high-order finite difference methods. Specifically, a fifth-order
upwind scheme is applied to discretize the inviscid flux derivatives. By using the shock-
fitting method, the interaction between the bow shock and the wall blowing-suction induced
perturbations is solved as a part of the solutions with the position and velocity of the shock
front being solved as dependent variables. Both of the cases correspond to an adiabatic wall
boundary condition.

The numerical simulations in the current paper have been well validated. For the flow
over the flat plate, three sets of grid structures are used to check the grid independence of
numerical simulation results near the leading edge. The steady flow is compared with the
experimental measurements of Maslov et al.[MSSA01]. At three different locations, x = 96
mm, 121 mm, and 138 mm (R = 1134.46, 1254.19, 1329.66), the distributions of the dimen-
sionless streamwise velocity and normalized Mach number in the wall-normal direction are
in good agreement with those measured in experiments. Two sets of the grid structures
are used to check grid independence of unsteady numerical simulations. The comparison of
pressure perturbation amplitudes calculated using the two grid structures shows that the
grid structure used for the simulation is sufficient. Details of the validations are presented
in Ref. [WZ09]. In Ref. [TWZ07], validations of the numerical simulation results on the
sharp wedge were carried out for both steady and unsteady flows. Furthermore, the nu-
merical perturbation field just downstream of the blowing-suction slot was decomposed into
boundary-layer waves. The amplitudes of the decomposed waves were in good agreement
with those obtained from a theoretical receptivity model.
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Figure 2.1: Amplitude distribution of the blowing-suction through the slot.

2.4 Results

2.4.1 Flat plate

The free-stream flow conditions that we consider are: Mach numberM∞ = 5.92, temperature
T∞ = 48.69 K, pressure p∞ = 742.76 Pa. The Prandtl number and the specific heat ratio are
0.72 and 1.4, respectively. The free stream flow parameters are the same as those of Maslov
et al. [MSSA01].

The viscosity coefficient is calculated by Sutherland’s law. The dimensionless blowing-
suction of mass flux at the wall is expressed as

(ρv)′ = εg (l)S(t), ε = 0.405× 10−5,

g (l) =

{

20.25l5 − 35.4375l4 + 15.1875l2, (l ≤ 1) ;

−20.25 (2− l)5 + 35.4375 (2− l)4 − 15.1875 (2− l)2 , (l > 1) ,
(2.17)

l (x) =
2 (x− xi)

(xe − xi)
, xi ≤ x ≤ xe,

where xi = 33 mm and xe = 37 mm are the coordinates of the leading and the trailing edges
of the slot, respectively. The amplitude distribution, g (l), is shown in Fig. 2.1.

The function of time S(t) in (2.17) is defined as

S (t) =

{

1, mod(t, 20µs) ≤ 2µs;

0, mod(t, 20µs) > 2µs.
(2.18)
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Figure 2.2: Discrete modes and the continuous spectrum.

The function S(t) can be expressed as a Fourier series.
Analyses of the mean flow velocity, temperature profiles and their derivatives have shown

that they agree well with the self-similar solution for a boundary layer over a flat plate
(see Appendix A.1). Only the second derivatives of the velocity and temperature profiles
demonstrate some differences between the DNS results and the self-similar solution. Because
of the viscous-inviscid interaction, the edge velocity, Ue, and temperature, Te, are slightly
different from the free-stream values U∞ and T∞, respectively. Therefore. the local edge
Mach number Me also is different from the free stream Mach number. However, the viscous-
inviscid interaction is weak at the considered flow parameters. For example, we consider the
flow parameters outside the boundary layer at y/L ≈ 50, where the length scale L is defined
as (µ∞x/ρ∞U∞)1/2. At x = 0.099 m, 0.359 m, and 0.659 m, the dimensionless velocities
and the local Mach numbers are equal to U/U∞ = 0.9983, 0.9992, 0.9994, and Me = 5.845,
5.882, 5.892, respectively. Therefore, we neglect these small variations in the local Mach
number Me, in the edge velocity, Ue, and temperature, Te, and consider them to be equal to
the free-stream parameters.

Comparison of the eigenvalues α obtained using the self-similar and DNS profiles is shown
in Appendix A.1. There is a difference in αi at high frequencies. In the analysis of the flat
plate data, the self-similar profiles have been used in the stability equations. The analysis
of the perturbations is limited to the DNS data corresponding to perturbations of 100 kHz
only. The corresponding dimensionless frequency is 55.02939 × 10−6. In order to deal with
the two-dimensional perturbations within the solver of Refs. [Tum07, Tum08], the spanwise
wave number β scaled with the Blasius length scale, L, was chosen equal to 10−5.

In order to illustrate further analysis of DNS results, features of the spectrum should

11



Figure 2.3: Real parts of the phase velocities of the discrete modes F and S scaled with the
free-stream velocity U∞.

be introduced. Figure 2.2 shows the branches of the continuous spectrum and two discrete
modes at x = 0.08 m (R = 1063.02). One of the discrete modes is labeled mode F (fast); the
other is labeled mode S (slow). The mode names stem from their phase velocity features in
the vicinity of the leading edge. One can see in Fig. 2.3 that mode S is synchronized with the
slow acoustic wave (cr = 1− 1/M∞), whereas mode F is synchronized with the fast acoustic
wave (cr = 1 + 1/M∞). At the chosen flow parameters, mode F is always stable, and mode
S is the unstable mode. One can see that mode F is synchronized with the vorticity/entropy
modes having dimensionless phase velocity cr = 1 at x ≈ 0.25 m (R = 1879.17). The
significance of the decaying mode F stems from its synchronization with mode S, where the
decaying mode can give rise to the unstable mode (switching of the modes), which may lead
to transition [FK01].

Mode S.
Figure 2.4 shows the pressure perturbation on the wall (scaled with the free-stream

pressure) obtained in the DNS and projections onto the discrete mode S. Amplification of
the discrete mode evaluated with and without the nonparallel flow effects (MMS and LST,
respectively) is also presented in Fig. 2.4. One can see that the nonparallel flow effect is
significant in this example. The DNS data for the wall pressure perturbation have wiggles
near the actuator region due to input from the various modes presented in the signal (Fig.
2.5). The filtered out amplitude of the unstable mode S is smooth, and it is in good agreement
with the theoretical prediction on the whole interval.

Mode F
It is interesting to look at the filtered out decaying mode F on Fig 2.6. It is in good
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Figure 2.4: Projection of the DNS results onto the discrete mode S.

Figure 2.5: A closer view of the results in Fig. 2.4 in the vicinity of the actuator.
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agreement with the theoretical prediction up to x ≈ 0.25 m. After that, it experiences a
jump and the amplitude becomes comparable with the amplitude of mode S. The result can
be attributed to the next term in the expansion (2.6). The second term, A

(1)
ανβ (X, y), can be

expanded into the eigenfunction system. It is the standard problem of finding eigenfunctions
of a perturbed operator using the unperturbed basis [Fri90]. For the non-resonance case
when eigenvalues of modes F and S are distinct (αS 6= αF ), it is straightforward to find a

projection of A
(1)
αSβ (X, y) onto AαF β (X, y) (indices S and F indicate slow and fast discrete

modes, respectively).
After applying of the Fourier transform to the linearized equations (2.1) with respect

to coordinate z and substitution of Aβ (x,X, y), one can derive the following equation for

A
(1)
αSβ (X, y):

∂

∂y

(

L0
∂A

(1)
S

∂y

)

+ L1
∂A

(1)
S

∂y
−H1A

(1)
S − iαSH2A

(1)
S − iβH3A

(1)
S = Φ, (2.19)

Φ ≡ dDS (X)

dX
H2A

(0)
S +DS (X)H2

∂A
(0)
S

∂X
+DS (X) H̄4A

(0)
S ,

where H̄4 = ε−1H4. For the purpose of brevity, we use subscript S to indicate the slow
discrete mode having wave numbers αS. One can represent the solution for A

(1)
S as an

expansion into the eigenfunctions of the undisturbed operator. In symbolic form, we write

A
(1)
S =

∑

αk 6=αS

Ck (X)A
(0)
k . (2.20)

The symbolic form of the expansion (2.20) means that we include expansion into the discrete
modes and continuous spectrum as well. Assuming that there is no resonance (αk 6= αS),

one can substitute A
(1)
S from Eq. (2.20) into Eq. (2.19). Using the dot product with the

adjoint eigenvector B
(0)
F , we arrive at the coefficient CF :

CF (X) =
DS (X)

i (αF − αS)

〈

H2
∂A

(0)
S

∂X
,B

(0)
F

〉

+
〈

H̄4A
(0)
S ,B

(0)
F

〉

〈

H2A
(0)
F ,B

(0)
F

〉 . (2.21)

The input of mode F into the second term of Eq. (2.6) has a wave number (and phase speed)
corresponding to mode S. We refer to this contribution of the mode F as “S2F centaur”
in order to emphasize the two-fold character of the term. The wall pressure perturbation
associated with S2F centaur is shown in Fig. 2.7. Although the theoretical result for mode F
downstream from the point of synchronism demonstrates qualitatively the same qualitative
behavior as the amplitude of the DNS projection onto the mode F, there is a quantitative
discrepancy that has yet to be understood.

Velocity profiles of modes S and F
Having found the coefficients in the projection of the DNS results onto modes S and F ,

we can compare the velocity profiles of the modes with the DNS results in order to evaluate
their significance at different distances from the actuator.
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Figure 2.6: Projection of the DNS results onto the discrete mode F.

Figure 2.7: Projection of the DNS results onto the discrete mode F, and amplitude of S2F
centaur.
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Figure 2.8: Streamwise velocity perturbation at x = 0.219 m.

Figure 2.9: Streamwise velocity perturbation at x = 0.334 m.
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Figure 2.10: Streamwise velocity perturbation at x = 0.659 m.

One can see that the main input into the velocity perturbation stems from mode S. In
the vicinity of the modes’ synchronism, the amplitude of mode F is higher as expected from
results presented in Fig. 2.7. The receptivity studies in Ref. [TWZ07] showed that the
amplitude of mode F in the vicinity of the actuator is higher than the amplitude of mode
S. In the present work, we consider perturbations far downstream from the actuator, and
mode S has a larger amplitude than mode F.

2.4.2 Sharp wedge

In this example, periodic-in-time wall blowing-suction was introduced into the boundary
layer over a wedge of half-angle 5.3 degrees. The free-stream flow conditions were: Mach
numberM∞ = 8, temperature T∞ = 54.8 K, pressure p∞ = 389 Pa. The Prandtl number and
the specific heats ratio are 0.72 and 1.4, respectively. The viscosity coefficient is calculated by
Sutherland’s law. The flow parameters are the same as in the work by Malik et al. [MLS99].
Results of Ref. [MLS99] were used for the validation of the code used in the present work
(see Ref. [TWZ07]).

The periodic-in-time blowing-suction slot has coordinates of the leading and trailing
edges at xi = 51.84 mm and xe = 63.84 mm, respectively. These flow parameters and the
actuator location correspond to Case 3 considered in Ref. [TWZ07]. The dimensionless wall
blowing-suction of mass flux at the wall is expressed as

(ρv)′ = q0g(l)
15
∑

n=1

sin(ωnt), (2.22)
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Figure 2.11: Pressure perturbations (pwall/p∞) on the wedge at three frequencies.

where q0 = 0.734 × 10−7 is a dimensionless amplitude parameter, scaled by the free-stream
streamwise mass flux; function g(l) is defined in Eq. (2.17), and ωn is the circular frequency
of the multi-frequency perturbations.

Figure 2.11 illustrates the pressure perturbations on the wedge at three frequencies: 44.76
kHz, 104.44 kHz, and 164.12 kHz (the dimensionless frequencies ωµe/(ρeU

2
e ) scaled with

the local boundary-layer edge parameters are approximately 21.4 × 10−6, 50.0 × 10−6, and
78.6× 10−6, respectively). Figure 2.12 shows the local Reynolds number R = (ρex/µeUe)

1/2

versus coordinate x.
In the following examples, analysis of the flow stability was based on the velocity and

temperature profiles obtained from the computations without an assumption about the self-
similar character of the boundary layer flow. In order to compare the projected amplitudes
with those predicted using the method of multiple scales, we need derivatives ∂/∂x of the
streamwise velocity and temperature profiles of the mean flow. These derivatives were derived
using the computational profiles together with the assumption that the profiles locally are
self-similar.

Figure 2.13 shows the imaginary part of the wave number α scaled with L = (µ∞x/ρ∞U∞)1/2

obtained using the quasi-parallel approximation (LST) and using the method of multiple
scales (MMS) for perturbations of F = 44.6 kHz. Figure 2.14 shows wall pressure pertur-
bations in DNS results and in their projection onto mode S together with the theoretical
prediction when the nonparallel flow effects are included. Figures 2.15 and 2.16 show similar
results corresponding to frequency f = 104.44 kHz. Figs. 2.17 and 2.18 demonstrate the
results at frequency f = 164.12 kHz. It is interesting that the nonparallel flow effect on
αiL has a different character at low and high local Reynolds numbers (see Figs. 2.15 and
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Figure 2.12: The local Reynolds number versus coordinate x.

2.17). Using Mack’s terminology [Mac69], mode S is associated with the ”first Mack’s mode”
and the ”second Mack’s mode” at low and high local Reynolds numbers, respectively (see
clarification of the terminology in Ref. [FT10]). The nonparallel flow effects destabilize the
first mode and stabilize the second mode. The same observation was reported by Chang and
Malik [CM93]. Appearance of the strong hump in αiL at low Reynolds numbers as seen in
Figs. 2.15 and 2.17 is attributed to the transformation of the first mode into the second one
[CM93].

2.5 Discussion of the results

The presented results illustrate how the multimode decomposition technique may serve as a
tool for gaining insight into the flow dynamics in the presence of perturbations belonging to
different modes. In the past, one could compare DNS results with theoretical prediction for
the unstable mode only far downstream from an actuator where the unstable mode dominates
the total signal. Using the biorthogonal eigenfunction system, one can compare DNS results
with theoretical predictions for the unstable and stable modes in the vicinity of the actuator
as well.

In Ref. [TWZ07] and in the present work, we have found that the multimode decompo-
sition requires a more elaborate analysis within the point of synchronism of mode F with
the continuous spectrum. Therefore, an extension of the theoretical model of Ref. [FK01]
to the case of continuous spectrum is required.

Analysis of the growth rates using the method of multiple scales revealed that they have
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Figure 2.13: Im(αi) versus x at frequency f = 44.76 kHz.

Figure 2.14: Projection of the DNS results onto the discrete mode S and comparison with
the theoretical prediction using the method of multiple scales (MMS). f = 44.76 kHz.
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Figure 2.15: Im(αi) versus x at frequency f = 104.44 kHz.

a non-monotonic character in the region where the first Mack’s mode is transformed into
the second one (the terminology regarding Mack’s modes is clarified in Ref. [FT10]). This
observation is in agreement with studies in Ref. [CM93]. The nonparallel flow effects in the
boundary layer over an adiabatic wall destabilize the first mode and stabilize the second one.
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Figure 2.16: Projection of the DNS results onto the discrete mode S and comparison with
the theoretical prediction using the method of multiple scales (MMS). f = 104.44 kHz.

Figure 2.17: Im(αi) versus x at frequency f = 164.12 kHz.
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Figure 2.18: Projection of the DNS results onto the discrete mode S and comparison with
the theoretical prediction using the method of multiple scales (MMS). f = 164.12 kHz.
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Chapter 3

High-speed boundary-layer instability:
Old terminology and a new framework

This section is based on the paper published in collabaration with A. Fedorov in Refs. [FT11]
and [FT10]

3.1 Introduction

In hydrodynamic stability analysis, the normal mode concept suggests considering sim-
ple wave-like solutions of the linearized Navier-Stokes equations in the form q ′(x, y, t) =
q(y) exp(iαx − iωt), where q(y) is a complex amplitude function. This form assumes that
the mean flow is parallel or quasi-parallel; i.e. the mean flow velocity and temperature pro-
files are functions of y only. The underlying idea of the normal mode concept is that instead
of solving a specific physical initial boundary-value problem, we consider normal modes of
the wave system, expecting that a solution of the initial boundary-value problem for the
partial differential equations (PDE) can be presented as a sum of the normal modes. If
there is an unstable mode, it is expected that this mode will be present in the solution of a
specific physical problem (realized experimentally or solved numerically) and it can be dom-
inant after sufficient amplification in space and/or time. Because the continuum medium
has an infinite number of degrees of freedom, the disturbance field has a numerable discrete
spectrum or a continuous spectrum, or a combination of both [CJJ67, Mik74].

In general, we may consider the wave number, α = αr + iαi, and frequency, ω = ωr + iωi,
as complex quantities. Very often two formulations are mentioned: temporal and spatial
theories. In the temporal stability theory, αi = 0 and αr is considered as a parameter, while
ω is the complex frequency determined from the dispersion relation ω = ω(α,R,M, ...).
According to the normal mode treatment, the solution depends on time as exp(−iωt) =
exp(−iωrt+ ωit). It is unstable (grows exponentially with t) if ωi > 0, stable if ωi < 0, and
neutral if ωi = 0. In the spatial stability theory, ωi = 0 and ωr is the real frequency con-
sidered as a parameter, while the complex wavenumber α is determined from the dispersion
relation α = α(ω,R,M, ...). Now, the disturbance amplitude depends on the streamwise
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coordinate as exp(iαx) = exp(iαrx−αix). Propagating downstream, the disturbance grows
exponentially with x if αi < 0, and decays if αi > 0.

One can find in the literature an ambiguity with the choice between temporal or spatial
formulations of stability problems. The ambiguity has its origin at the step when partial
solutions of PDE are suggested in the form of normal modes. At this point, the link with the
initial boundary-value problem for a specific setup is lost, and we have an artificial dilemma
of spatial versus temporal formulations.

Gustavsson [Gus79] solved an initial value problem for perturbations in the incompress-
ible boundary layer. Salwen and Grosch [SG81] proved that Gustavsson solution is an
expansion into the modes of discrete and continuous spectra of the temporal stability prob-
lem. The difference between the discrete spectrum and the continuous spectrum is their
behavior outside the boundary layer (y →∞). The discrete spectrum is required to vanish
as y →∞, while the continuous part is only required to be bounded. Ashpis and Reshotko
[AR90] considered the signaling problem when a periodic-in-time point source introduces
perturbations through the wall starting at t = 0. They showed that the solution of this
problem can be presented (after a sufficiently long time when the transient effect is smeared
out) as an expansion into modes of the discrete and continuous spectra resulted from the
spatial stability theory. Therefore, the analysis of a specific initial boundary-value problem
for PDE leads to the unique expansion of a solution into the normal modes without any am-
biguity. In compressible boundary layers, there are seven branches of continuous spectrum
[TF83, BM92]: three branches correspond to waves propagating upstream with rapid decay,
two branches correspond to slow and fast acoustic waves propagating downstream, and two
branches correspond to vorticity and entropy waves propagating downstream.

Mack [Mac69] discovered new unstable modes of the discrete spectrum in high-speed
boundary layers. He first considered the temporal stability problem for inviscid perturba-
tions and computed the eigenvalue dependencies ω(α) for the flat-plate boundary layer at
various free-stream parameters. In discussion of these dependencies, Mack used the terms
modes and families. However, his usage of the term modes is inconsistent with the mathemat-
ical definition of modes as eigenfunctions that can be used for expansion of PDE solutions.
Mack definition of families is what mathematicians would normally call modes. Moreover,
Mack subdivided a family representing one dependency of ω(α) into different pieces giving
them different labels of modes. To illustrate Mack terminology, we refer to Fig. 3.1 showing
the phase speed diagram ci(α) = ωi(α)/α for the boundary layer on a thermally insulated
(adiabatic) flat plate at the Mach number M = 3.8. One may compare Fig. 3.1 with
Fig. 11.6a of [Mac69]. Note that because we conduct computations at constant Prandtl
number, Pr = 0.72, and in some cases at different stagnation temperature, there are some
differences between our results and the results of [Mac69]. Hereafter, dimensionless param-
eters are obtained using the Blasius length scale

√

ν∗ex
∗/U∗

e (asterisk denotes a dimensional
quantity). Following Mack notation, the wavenumbers αsn (n = 1, 2, ...) are associated with
the generalized inflection point at which d ((dU/dy) /T ) /dy = 0, and the wavenumbers α1n

(n = 1, 2, ...) are associated with regular neutral solutions.
Mack wrote (page 11-21, [Mac69]): The eigenvalues for ci 6= 0 lie on two separate curves
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Figure 3.1: Eigenvalue diagramm. M = 3.8, T0 = 300K, γ = 1.4, Pr = 0.72, adiabatic
wall. Inviscid theory. Region A corresponds to first-mode amplified solutions. Region
B corresponds to second-mode amplified solutions. Region C corresponds to second-mode
damped solutions.

in Fig. 11.6 and form distinct families of solutions. One family starts at the neutral sonic
solution; the other starts at the first-mode regular neutral solutions. It is easier to discuss the
inviscid solutions in terms of these families rather than in terms of the modes. The mode
identification changes along the eigenvalue curves, and is often not well defined. Further
down the same page, Mack introduces his definitions: In Fig. 11.6 the solutions of the c0
family between (0, c0) and (αs1, cs) are amplified, and there is almost no phase change across
the boundary layer in the pressure fluctuations. These solutions will be called first-mode
amplified solutions. The solutions of the α11 family between (α11, 1) and (αs2, cs) are also
amplified, but except near (α11, 1) there is a sizable phase change in the pressure fluctuations.
These solutions will be called second-mode amplified solutions. In the next paragraph on the
same page, Mack introduces a definition of the other part of the c0 family: It is of interest
that there is a local maximum in the damping rate of the c0 family of solutions at almost
the same wave number for which the amplification rate of the solution of the α11 family is
a maximum. Since the pressure-fluctuation phase change is large for the damped solutions
near this wave number, those solutions will be called second-mode damped solutions. Thus,
Mack uses two different mode labels for one family curve.

The spectrum structure becomes more complicated at higher Mach numbers. For exam-
ple, Figure 3.2 shows ci(α) at M = 7 (it is similar to Fig. 11.8a of [Mac69]). In connection
with this, Mack wrote on page 11-23 of [Mac69]: As shown in Fig. 11.8a for M = 7, the
c0 family of solutions no longer contains the first-mode neutral subsonic solution (αs1, cs)
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Figure 3.2: Eigenvalue diagramm. M = 7, T0 = 540K, γ = 1.4, Pr = 0.72, and Te = 50K.
Region A corresponds to first-mode amplified solutions. Region B corresponds to second-
mode amplified solutions. Region C corresponds to second-mode damped solutions. Region
D corresponds to third-mode damped solutions.
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and the second-mode damped solutions, but instead contains the second-mode amplified
solutions, the second-mode neutral subsonic solution (αs2, cs), and the third-mode damped
solutions. These examples illustrate that Mack definitions of modes are inconsistent with
conventional usage of the term normal modes. In Figs. 3.1 and 3.2, two distinct normal
modes correspond to the c0 and (α11, 1) families.

Mack then considered viscous perturbations and compared the dependencies of c(α) at
finite Reynolds numbers with the inviscid ones. For one of Macks choices of parameters,
there were two separate inviscid amplification rate curves for the first and second modes
([Mac69], page. 12-24) (i.e., two inviscid normal modes), but only a single amplification rate
curve at the finite Reynolds number shown (i.e., one viscous normal mode). This example
illustrates that the spectrum structure can be drastically changed by the viscous effects.

Receptivity studies in 1980s-2000s, which are summarized in [Fed03, Tum06a], indicated
that excitation of instabilities predominantly occurs upstream from the unstable region.
This motivated Fedorov and Khokhlov [FK01] to investigate the disturbance spectrum in the
region located upstream from the lower neutral branch. The spatial stability analysis [FK01]
of 2D unstable modes in hypersonic flows revealed the following features (Fig. 3.3): (1) in the
leading-edge region, two discrete modes (fast and slow) are synchronized with the fast and
slow acoustic waves of the continuous spectrum, respectively; (2) further downstream, the
fast discrete mode is synchronized with the entropy and vorticity waves of the continuous
spectrum; (3) further downstream, the fast discrete mode is synchronized with the slow
discrete mode. The latter synchronization leads to a branching of the discrete spectrum
[GF, GF90]. As shown in [FK01], the normal mode decomposition is not valid in the branch-
point vicinity and should be replaced by a local solution accounting for the coupling of
discrete modes. Consequences of these findings for modeling of high-speed transition are
recently discussed by Fedorov [Fed11].

The aforementioned shortcomings of Mack terminology motivated Fedorov [Fed03] to
categorize the discrete modes using their asymptotic behavior near the leading edge. As
shown in [FK01] for 2D disturbances, the phase speed of one mode tends to c = 1 − 1/M
of slow acoustic wave, whereas the phase speed of the other tends to c = 1 + 1/M of fast
acoustic wave. Fedorov [Fed03] called the former mode slow mode (mode S) and the latter
fast mode (mode F). This terminology came to be used for the interpretation of DNS results
[EFS06, TWZ07, WZ23, EFS08] on the receptivity and stability of high-speed boundary-
layer flows.

The temporal stability analyses [FA03, FT05] revealed similar features of the spectral
curves ω(α) at fixed Reynolds number R. Namely, the fast (or slow) mode is synchronized
with the fast (or slow) acoustic wave in the long-wave limit α→ 0. As α increases, the fast
mode is synchronized with the entropy/vorticity waves, and then it is synchronized with the
slow mode that leads to branching of the discrete spectrum. The branching causes instability
of what is called the second mode (according to Mack terminology). This similarity is not
surprising because the spectrum behavior depends on the product α∗δ. The case of α∗ =fixed
and δ → 0 is treated as a leading-edge limit, while the case of δ =fixed and α∗ → 0is treated
as a long-wave limit.
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Figure 3.3: Imaginary and real parts of the phase speeds for slow and fast modes. M = 4.5,
Tw = Tad, F = 5× 10−5, spatial stability analysis.
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Mack [Mac69] introduced the viscous and inviscid families of solutions when the recep-
tivity problem was not understood, and the decomposition of the solutions of the linearized
Navier-Stokes equations had not been developed. A loose usage of the fist mode and the
second mode terminology has not been an obstacle in discussion of LST applications to tran-
sition prediction (e.g. using the eN -method) even in the cases when only one unstable normal
mode exists at finite Reynolds numbers. However, one has to be aware of the meaning of
this imprecise terminology when transition prediction is based on consideration of the first
and/or second mode. On the other hand, the usage of the mode F and mode S terminol-
ogy has not yet been discussed properly in connection with the inviscid stability theory. In
this paper, we consider the discrete spectrum of disturbances in high-speed boundary layers
in order to clarify the contemporary terminologies and their interrelations. In addition, a
model of discrete spectrum branching is outlined in order to explain different behaviors of
the aforementioned discrete modes.

3.2 Discussion of discrete spectrum in high-speed

boundary layers

This section illustrates examples of discrete normal modes resulted from numerical solutions
of the temporal and spatial stability problems for the locally parallel boundary-layer flow on
a flat plate. All computations were conducted for perfect gas of constant Prandtl number
Pr = 0.72 and specific heat ratio γ = 1.4. Viscosity is calculated using the Sutherland law
with a constant of 110.4K and the bulk viscosity is zero. The mean flow profiles correspond
to the compressible Blasius solution; i.e., the viscos-inviscid interaction is neglected. The
discrete spectrum structures for viscous (at finite Reynolds number) and inviscid (R→∞)
disturbances are compared.

3.2.1 Temporal stability theory

In order to show the link between discrete modes at finite and infinite Reynolds numbers,
we have to consider the regular neutral modes. The inviscid stability equations have neutral
(ci = 0) discrete solutions with the phase speed 1 ≤ cr ≤ 1 + 1/M . Figures 3.4a and 3.4b
illustrate ci(α) and cr(α) for the boundary layer on an adiabatic flat plate at M = 3.8 and
R→∞, while figures 3.5a and 3.5b show ci(α) and cr(α) at finite R = 2000. In the viscous
case, the fast discrete mode, which is synchronized with fast acoustic wave of c = 1 + 1/M
as α → 0, has a small jump of ci(α) at the point where cr = 1. Actually, we should treat
the fast mode as two discrete modes. One of them has cr > 1 and coalescences with the
continuous spectrum branch corresponding to vorticity and entropy waves (cr → 1 + 0).

The other mode departs from this branch with cr → 1−0 and has cr < 1. The coalescence
and departure occur at slightly different values of ci. Because the jump of ci is small, it is
usually ignored in stability analyses. However, the eigenfunctions are substantially different
on different sides of cr = 1. Their outer asymptotic forms contain different eigenvectors,
which are proportional to exp(iαx ± iλy − iωt) as cr → 1 ∓ 0 and y → ∞. This difference
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a)

b)

Figure 3.4: ci (a) and cr (b) versus α. M = 3.8, T0 = 300K. Inviscid theory.
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a)

b)

Figure 3.5: ci (a) and cr (b) versus α. M = 3.8, T0 = 300K, R = 2000.
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a)

b)

Figure 3.6: ci (a) and cr (b) versus α. M = 4.2, T0 = 300K. Inviscid theory.
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a)

b)

Figure 3.7: ci (a) and cr (b) versus α. M = 4.2, T0 = 300K, R = 2000.
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a)

b)

Figure 3.8: ci (a) and cr (b) versus α in inviscid and viscous (R = 2000) analyses, M = 7,
Te = 50K.
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is important for analysis of the initial value problem [FA03] describing receptivity to vor-
ticity/entropy disturbances. Hereafter we call these modes as mode F- and mode F+. As
shown in figure 3.5, mode F- is associated with the regular neutral solutions in the inviscid
limit. Mode S, which is synchronized with the slow acoustic wave of phase speed c = 1−1/M
as α→ 0, corresponds to the inviscid slow mode shown in Figs. 3.4a and 3.4b. Mode F+ is
unstable at the range of relatively large relevant to the second-mode instability. Mode S is
unstable in the range of small relevant to the first-mode instability.

Figures 3.6a and 3.6b illustrate ci(α) and cr(α) for the boundary layer on an adiabatic flat
plate at M = 4.2 in the inviscid limit R → ∞. The spectrum behavior is qualitatively the
same as in the case of M = 3.8 (Figs. 3.4a and 3.4b). However, it is drastically different at
the finite Reynolds number R = 2000 (Figs. 3.7a and 3.7b). Now, there is only one unstable
mode (mode S) that has two maxima of ci associated with the two unstable regions. This
is similar to Mack observation in the cases of M = 5.8 and M = 7 ([Mac69], page 12-24).
Comparing the cases shown in Figs 3.5a,b and Figs. 3.5a,b we conclude that increasing of
Mach number from 3.8 to 4.2 (at fixed R = 2000) leads to a qualitative change in the discrete
spectrum pattern.

Figures 3.8a and 3.8b shows ci and cr versus α for the inviscid and viscous cases at M = 7.
Comparison of these data with that shown in Figs. 3.6a and 3.6b indicates that in the limit
of R→∞ the discrete spectrum pattern switches over to a different topology somewhere in
the range 4.2 < M < 7. This change is similar to that observed for viscous disturbances in
the Mach number range from 3.8 to 4.2.

3.2.2 Spatial stability theory

Adiabatic wall

In the case of an adiabatic wall in the spatial theory, available numerical results indicate
that there is only one unstable mode (mode S). Figures 3.9a and 3.9b show αi versus fre-
quency at M = 3.8 and fixed Reynolds numbers. One can see that there are two minima
in αi(ω). At R = 600, only the first minimum represents spatially unstable solutions. At
R = 2000, unstable perturbations can be found in two bands of frequencies. Plotting the
neutral curves in the ω−R plane shows two unstable regions, but both of them are associated
with mode S.

Another example is shown in Fig. 3.10 for the case of M = 4.2 and R = 2000. Again,
mode S is unstable in the low-frequency band relevant to the first-mode instability, and in
the high-frequency band relevant to the second-mode instability.

Cold wall

It was shown in [FK01] that mode F+ can be unstable as well. In order to illustrate the
spectral pattern, we consider perturbations at a fixed frequency parameter F = ω∗ν∗e/U

∗2
e .

The dimensionless angular frequency is ω = F × R, the eigenvalues and phase speeds are
expressed as α = α(R), c(R) = ω/α(R).
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a)

b)

Figure 3.9: αi versus ω at R = 600 (a) and R = 2000 (b), M = 3.8. Adiabatic wall.
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a)

b)

Figure 3.10: αi (a) and cr (b) versus ω. M = 4.2, T0 = 300K, R = 2000. Adiabatic wall.
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a)

b)

Figure 3.11: αi (a) and cr (b) versus R. M = 5.5, Te = 70K, Tw/Tad = 0.1, F = 10−4.
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a)

b)

Figure 3.12: αi (a) and cr (b) versus R. M = 6.5, Te = 70K, Tw/Tad = 0.1, F = 10−4.
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Figures 3.11 and 3.12 show αi(R) and cr(R) of modes S, F- and F+ for the boundary-layer
flow at M = 5.5 and M = 6.5, respectively. In the both cases, the mean-flow temperature
at the upper boundary-layer edge is T ∗

e = 70K, the wall temperature is Tw = 0.1Tad, and
the frequency parameter is F = 10−4. Similar to the temporal stability cases discussed in
Section A, mode F- (or mode S) is synchronized with the fast (or slow) acoustic wave in
the leading-edge region corresponding to the long-wave limit. Then mode F- is synchronized
with vorticity/entropy waves of the continuous spectrum at the station where cr = 1. As
the fast-mode eigenvalue crosses the vorticity/entropy branch, its imaginary part jumps by
a small value ∆αi. Further downstream mode F+ is synchronized with mode S and the
dispersion curves branch out.

In the case of M = 5.5 (Figs. 3.11a and 3.11b), the branching leads to destabilization of
mode F+ and stabilization of mode S in the range of relevant to instability of Mack second
mode. As contrasted to the adiabatic wall cases, there is no instability of the slow mode at
relatively small because this instability (associated with Mack first mode) is suppressed by the
wall cooling. In the case of M = 6.5 (Figs. 3.12a and 3.12b), the branching is qualitatively
different. Now mode S is unstable and mode F+ is stable. Detailed computations showed
that the switching from one topology to the other occurs at M ≈ 6.

3.3 A model of the discrete spectrum branching

Guschin and Fedorov [GF, GF90] have realized that the aforesaid branching of discrete
spectrum is similar to the branching of weakly coupled waves that is typical for wave systems
in the physics of plasmas Fedorchenko (see also 64 of [LP81]). Herein we outline an analytical
model describing this branching.

Consider the temporal spectrum ω(α) and assume that the eigenvalues ω1(α) and ω2(α)
(in our case, they are relevant to modes F+ and S) are synchronized in the vicinity of a certain
point α0: ω1(α0) ≈ ω2(α0) ≈ ω0. The other modes of the discrete and continuous spectra are
assumed to be sufficiently far from the synchronization region. Then, the dispersion relation
in the vicinity of (α0, ω0) can be approximated as

(ω̄ − a1ᾱ) (ω̄ − a2ᾱ) = εt, (3.1)

where ω̄ = ω − ω0 and ᾱ = α− α0 are local variables, εt is a small parameter characterizing
weak coupling between the modes, and a1 > a2 > 0 are the group velocities of the decoupled
modes (at εt = 0) schematically shown in Fig. 3.13. The dispersion curves branch out in
the vicinity of the synchronization point as

ω̄1,2 =
a1 + a2

2
ᾱ±

√

1

4
ᾱ2(a1 − a2)2 + εt. (3.2)

The branching pattern depends on the locations of the branch points ᾱbr1,2 = ∓2
√−εt/(a1−

a2) in the complex α-plane. If εt > 0, then ᾱbr1,2 are pure imaginary and the dispersion curves
branch out as shown schematically in Fig. 3.14. In this case, the coupling does not cause
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Figure 3.13: Synchronization of two uncoupled modes in the vicinity of (α0, ω0).
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Figure 3.14: Neutral branching at εt > 0.
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instability. If εt < 0, the branch points are real while ω̄1,2 are complex values in the range
ᾱbr1 < ᾱ < ᾱbr2. In this case, one mode becomes stable and the other unstable. Depend-
ing on bypasses of the branch points, there are four patterns of dispersion curves as shown
schematically in Fig. 3.15.

For the temporal spectra of the boundary-layer flow discussed in Section IIA, the branch-
ing of modes F+ and S is topologically identical with one of the patterns shown in Fig. 3.15.
The branch points were determined numerically from the condition |∂ω/∂α|−1 = 0. Com-
putations showed that αbr1,2 are slightly shifted from the real axis to the lower or upper
half-plane of complex α depending on the basic flow parameters. As one marches along real
α, the branch points are bypassed from above or below, leading to a particular branching
pattern.

The branch points move in the α-plane with variations of the flow parameters, say the
Mach number. As soon as αbr crosses the real axis, the branching pattern switches over from
one to another. For example, Figure 3.16 shows such switching from the branching A to the
branching B due to a slight increase of Mach number from 4 to 4.2.

By computing the trajectories of the branch points and determining the parameters at
which αbr1,2 crosses the real axis one can identify domains relevant to different branching
patterns. As an example, Figure 3.17 shows the boundary between the branching A and
the branching B in the Mach number-wall temperature plane. Below this boundary (at the
relatively cold wall condition) there are two unstable modes: mode S is unstable in the range
of small α and mode F+ is unstable in the range of large α. Above this boundary, there is
only one unstable mode the slow mode.

Similar analysis can be conducted for the spatial stability problem [FK01]. The dispersion
relation is analytically continued to the complex plane of . In the vicinity of synchronization
point (R0, α0), Equation (1) is written in the form

(ᾱ− b1ω̄) (ᾱ− b2ω̄) = εs, (3.3)

where ᾱ = α− α0, ω̄ = F (R−R0) = FR̄, b1 = a−1
2 and b2 = a−1

1 are constants, b1 > b2 > 0,
a small parameter εs = εt/(a1a2) characterizes the coupling between synchronized modes.
The solution has two branches

ᾱ1,2 =
b1 + b2

2
FR̄∓

√

1

4
(b1 − b2)2F 2R̄2 + εs. (3.4)

The branch points R̄br1,2 = ∓2
√
εs/ [F (b1 − b2)] are located in different half-planes of

complex R depending on the basic flow parameters. With marching downstream along real
R, the branch points are bypassed from above or below that leads to different branching
patterns of α(R). For instance, in the case of M = 5.5 (Fig. 3.11), the both branch points
lie below the real axis of complex R-plane that gives the branching B shown in Fig. 3.15.
In the case of M = 6.5 (Fig. 3.12), the first branch point is above the real axis while the
second is below. This gives the branching D.

Thus, the analytical model of weakly coupled synchronized modes helps to interpret
intricate behaviors of disturbance spectrums that are observed in high-speed boundary layer
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a)

b)

Figure 3.15: Branching patterns for two weakly coupled modes.
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a)

b)

Figure 3.16: Different branching patterns at small variation of Mach number at T0 = 300K,
R = 2000. Branch points are shown by black circles in the complex α-plane. (a) M = 4,
branch points are bypassed from below – branching A, (b)M = 4.2, branch points are
bypassed above – branching B.

46



Figure 3.17: αi (a) and cr (b) versus R. M = 6.5, Te = 70K, Tw/Tad = 0.1, F = 10−4.

flows. This model clearly shows that the second-mode instability is due to synchronization
of modes S and F+ . Similar mechanism is responsible for the third- and higher-mode
instabilities in hypersonic boundary layers [GF90], as well as short-wave instabilities in a
thin shock layer [GF89]. As an example, figures 3.18 and 3.19 show the discrete spectrum
at M = 7, Te = 50 K and R = 20000 in the case of adiabatic wall (Tw = Tad) and cold

wall (Tw = 1.2Te), respectively. In both cases, there are fast modes F
(1)
± , F

(2)
± , . . ., and the

slow mode S. On an adiabatic wall, the Macks second, third etc. instabilities correspond
to mode S. These instabilities are associated with the branching B between modes F

(k)
+ and

mode S. In the cold-wall case, the Mack second, third etc. instabilities correspond to modes
F

(1)
+ , F

(2)
+ etc. These instabilities are associated with the branching A. As the number k of

mode F
(k)
+ increases, the growth rates quickly decreases. E.g. the mode F

(3)
+ in figure 3.19a

is almost neutral. Ma and Zhong [MZ03a, MZ03b] showed that the fast modes F
(1)
− , F

(2)
−

etc. (named mode I, II, etc in [MZ03b]) are effectively excited by fast acoustic waves.
Fedorov and Khokhlov [FK01] showed that the normal mode decomposition is not valid

near the branch point of discrete spectrum. Using asymptotic methods they obtained a local
solution providing coupling between input and output amplitudes of the branching modes.
It turned out that this coupling is governed by the intermodal exchange rule, which, in
the leading-order approximation, does not depend on the mean-flow profiles. However, this
result may be not valid when the branch point is too close to the branch cut of continuous
spectrum. E.g. figure 3.16 shows that the relative distance between the first branch point
αb1 = 0.2199− i0.00075 and the vorticity/entropy branch cut is ∆α/α ≈ 5%. In this case
the vorticity/entropy waves may significantly affect the intermodal exchange. This issue
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a)

b)

Figure 3.18: ci (a) and cr (b) versus α. M = 7, Te = 50K, R = 2000. Adiabatic wall.
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a)

b)

Figure 3.19: ci (a) and cr (b) versus α. M = 7, Te = 50K, R = 2000. Cold wall, Tw = 1.2Te.
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Figure 3.20: Mean-flow profiles at M = 4.2, T0 = 300K and Tw = Tad.

should be clarified by further theoretical studies.

3.4 Eigenfunctions of slow and fast modes

Now we consider the eigenfunctions of the slow and fast modes for the boundary-layer flow
at M = 4.2, R = 2000 and Tw = Tad (see Figs. 3.7a,b). In all cases discussed herein, the
eigenfunctions are normalized to the absolute value of the pressure amplitude on the wall.
Perturbations of pressure p, streamwise velocity u and temperature θ are made nondimen-
sional using ρ∗eU

∗2
e , U ∗

e and T ∗
e , respectively. Figure 3.20 shows the mean-flow profiles U(y)

and T (y), where the boundary-layer thickness is δ = 12.5 (U(δ) = 0.99) and the displacement
thickness is δ1 = 9.34.

At α = 0.05 relevant to the first instability maximum, the eigenfunction of mode F−

typifies regular disturbances of the phase speed cr > 1 (thin lines in Fig. 3.21). The slow
mode (thick lines) of cr = 0.81 has the critical layer in the vicinity of yc ≈ 10. Here the
-velocity distribution has a phase jump and the temperature amplitude |θ| has a strong
maximum. The pressure amplitude |p| is almost constant across the boundary layer as
typical for long-wave disturbances. Near the wall (0 < y < 1.2) there is a well distinguished
viscous sublayer (Stokes layer) for both fast and slow modes.

Figure 3.22 shows eigenfunctions of modes F− and F+, which are synchronized with the
entropy and vorticity waves at cr → 1 ± 0. These functions are almost identical inside the
boundary layer, while the tails for the u-velocity and temperature are essentially different
outside the boundary layer. This clearly shows that mode F− with cr > 1 and mode F+ with
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Figure 3.21: Eigenfunctions of the fast and slow modes at α = 0.05, M = 4.2, T0 = 300K,
Tw = Tad, R = 2000.

cr < 1 are different normal modes of the discrete spectrum. The oscillatory behavior of the
outer tails is due to synchronization of the discrete modes with the entropy and vorticity
waves, which oscillate in the outer flow. A detailed discussion of these spectrum features is
given in [FA03].

Figure 3.23 shows eigenfunctions of modes S and F+ in the vicinity of the first branch
point αbr1 = 0.2199 − i 0.00075 (see Branching B in Fig. 3.16). As expected, in this region
both modes have similar distributions across the boundary layer. However, there are quan-
titative differences because the eigenfunctions were computed at α = 0.219 which is slightly
shifted from the branch point.

Figure 3.24 illustrates eigenfunctions at α = 0.25 relevant to the second maximum of
instability (see Fig. 3.7a). This point lies approximately in the middle of the branching
region αbr1 < α < αbr2, where the coupling between modes F+ and S produces the most
profound effect on the growth rates. Since the real frequencies of these modes are practically
identical, their eigenfunctions are very close everywhere besides the critical layer, which is
formed at the distance yc ≈ 10.

The foregoing examples show that the eigenfunctions of fast and slow modes are quite
sensitive to singularities of the dispersion relation caused by spectrum branching and by
coalescence with the continuous spectrum. This may significantly affect receptivity as well
as the nonlinear interaction between the modes.
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Figure 3.22: Eigenfunctions of fast modes in the vicinity of vorticity and entropy waves,
M = 4.2, T0 = 300K, Tw = Tad, R = 2000. Symbols – mode F+ at α = 0.1899, cr → 1− 0;
black lines – mode F− at α = 0.1886, cr → 1 + 0.

Figure 3.23: Eigenfunctions of modes F+ and S in the vicinity of the first branch point,
M = 4.2, T0 = 300K, Tw = Tad, R = 2000, α = 0.219.
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Figure 3.24: Eigenfunctions of fast and slow modes at α = 0.25, M = 4.2, T0 = 300K,
Tw = Tad, R = 2000.

3.5 Conclusions

The structure of the discrete spectrum in stability analysis of high-speed boundary layers
depends on basic flow parameters such as the Mach number, Prandtl number, Reynolds
number etc. The spectrum may have two unstable modes that are easily associated with
inviscid instabilities of Macks first and second modes. With another choice of the basic
parameters, the spectrum may have only one unstable mode having two maxima of the
growth rate.

Terminology introduced by Mack [Mac69] using modes 1 and 2 (the well-known first
and second modes) is inconsistent with a proper mathematical treatment of normal modes.
Macks family of solutions is actually what should be called a normal mode, whereas his
definitions of first-mode amplified solutions and second-mode amplified/damped solutions
lead to confusion when normal modes are used to represent a solution of the linearized
Navier-Stokes equations. The advances of the last decades have made necessary to develop
new terminology to replace the old. In mathematical analysis of the initial value problems,
it is more convenient to follow the terminology: fast (F) and slow (S) modes. According

to this terminology discrete modes F
(k)
− (k = 1, 2, . . .) are synchronized with fast acoustic

waves of the continuous spectrum at sufficiently small R in the spatial framework or at
sufficiently small α in the temporal framework. These modes have cr > 1 and correspond
to the regular neutral solutions in the inviscid limit. The discrete mode S is synchronized
with slow acoustic wave of the continuous spectrum as R→ 0 in the spatial framework or as
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α→ 0 in the temporal framework. As R (or α) increases, the phase speed of F
(k)
− decreases,

and ultimately these modes are absorbed by the continuous spectrum of vorticity/entropy

waves at cr = 1 + 0. Simultaneously modes F
(k)
+ spring from the continuous spectrum at

cr = 1−0, with ci being slightly different from ci of corresponding modes F
(k)
− . Although the

jump of ci is very small and is usually ignored in stability computations, the eigenfucntion
of mode F

(k)
− at cr = 1 + 0 is essentially different from the eigenfucntion of F

(k)
+ mode at

cr = 1− 0. This difference should be taken into account in solving the initial value problem
associated with receptivity to vorticity/entropy waves.

Depending on the flow parameters, both mode S and modes F
(k)
+ can be unstable (e.g. Fig.

19a) or only mode S is unstable having several maxima of the growth rate (e.g. Fig. 18a).
The low-frequency (long-wavelength) maximum is associated with Macks first mode, whereas
the higher-frequency (shorter-wavelength) maxima are associated with Macks second mode,

third mode etc. The second-mode instability is due to the branching of modes S and F
(1)
+

in the vicinity of their synchronization, the third-mode instability is due to the branching
of modes S and F

(2)
+ etc. Because this mechanism quickly weakens as the mode number

increases, in many cases it is sufficient to consider the second-mode instability only. For
weakly coupled modes, the local dispersion relation is expressed in a simple analytical form
that allows us to explain the intricate branching patterns observed in numerical solutions.
These patterns depend on the locations of branch points in the complex plane (α-plane for
the temporal problem or R-plane for the spatial stability problem describing propagation of
disturbances in a weakly nonparallel boundary layer). Infinitesimal variations of a basic flow
parameter (say, Mach number) can cause a jump from one branching pattern to another.
Furthermore, in the branch-point vicinity, the modes are singular, e.g. their group velocities
tend to infinity. Such unphysical behaviors indicate that instead of isolated normal modes
one should consider an initial boundary-value problem formulated for a certain physical
setup.

To avoid confusion in terminology we recommend that authors use the terms fast modes
(modes F− and F+) and slow mode (mode S) for both mathematical analyses and the in-
terpretation of direct numerical simulations dealing with initial-value problems. For inter-
pretation of experimental data and LST results focused on the characteristics of unstable
disturbances, it is reasonable to continue to use Macks terminology with the terms Macks
first mode and Macks second mode. If both terminologies are involved, the correspondence
between fast (or slow) modes and Mack first (or second) modes should be established.

The aforementioned singularities of the discrete spectrum may cause difficulties in stabil-
ity analyses based on traditional LST and PSE methods. Multiple-mode considerations are
needed to clarify this issue. This could be done using approximate theoretical models such
as those developed in [FK01], or by solving the linearized Navier-Stokes equations. Direct
numerical simulations are also needed to validate predictions of the reduced-order models.
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Chapter 4

Stability of boundary layers in binary
mixtures of oxygen and nitrogen

This section is based on the paper published in collabaration with J. Klentzman and E. Ulker
[UKT11]

NOMENCLATURE FOR CHAPTER 4

c = complex phase velocity, ω/α = cr + ici
cs = mass fraction of species s
Cpf = frozen specific heat, cal/g-mole-K
Cp,s = specific heat at constant pressure of species s, cal/g-mole
Dij = binary diffusion coefficient, cm2/sec
D̄ij = pD̄ij, cm

2 atm/sec
h = enthalpy of mixture, cal/g-mole-K
hs = enthalpy of species s, cal/g-mole-K
(∆hf

s )Tref
= standard heat of formation of species s at temperature Tref ,cal/g-mole

I = total enthalpy, h+ u2/2
Kf = frozen thermal conductivity of mixture in thermodynamic equilibrium, Kf = Ktr +

Kint, cal/cm-sec-K
Kint = internal component of frozen thermal conductivity of a mixture in thermodynamic

equilibrium,
Ktr = translational thermal conductivity of mixture from first Chapman-Enskog approx-

imation, cal/cm-sec-K
k = Boltzmann’s constant
k

(r)
b = forward reaction-rate coefficient for reaction r, cm6/mole2-sec

k
(r)
f = backward reaction-rate coefficient for reaction r, cm3 /mole-sec
Le = frozen binary Lewis number, ρCpfDij/Kf

M = Mach number
Ms = molecular weight of species s, g/g −mole
NA = Avogadro’s number, molecules/g −mole
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p = pressure, atm
Pr = frozen Prandtl number, µCpf/Kf

R = the mixture gas constant
Rs = Runiv/Ms, gas constant of species s
Runiv = universal gas constant, cal/g −mole-K
Sm = Schmidt number, µ/ρD12

T = temperature, K
t = time, sec
u = x-component of the velocity
v = y-component of the velocity
w = z-component of the velocity
Ẇs = net mass rate of production of species s
x = coordinate along the surface
Xs = molar fraction of species s
y = distance from the wall
z = spanwise coordinate
α = x-component of the wave number
β = z-component of the wave number
δ = boundary layer length scale
∆

(1)
ij = defined by Eq. (4.4), cm-sec

∆
(1)
ij = defined by Eq. (4.2), cm-sec

µ = viscosity of mixture from first Chapman-Enskog approximation, g/cm-sec
ρ = density of mixture, g/cm3

ρs = density of species s, g/cm3

ω = complex frequency of a perturbation
Ω̄

(1,1)
ij = average collision cross section for collisions between species i and j, angstrom2

Ω̄
(2,2)
ij = average collision cross section for collisions between species i and j, angstrom2

Subscripts

b = backward reaction
e = edge condition
f = forward reaction
w = wall condition

4.1 Introduction

Stability theory of compressible boundary layers has been established by theoretical studies
by Lees and Lin [LL46], Lees and Reshotko [LR62], and Mack [Mac65, Mac69, Mac75,
Mac]. More recent progress in the understanding of stability and receptivity of hypersonic
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boundary layers has demonstrated the importance of instability prehistory analysis [FK01,
FK02, Fed03]. For example, hypersonic instability prehistory reveals the following features:

1. In the leading edge region, discrete modes can be synchronized with fast and slow
acoustic modes. This synchronization provides an efficient channel for the generation
of discrete modes by acoustic perturbations;

2. Further downstream, a decaying discrete mode can be synchronized with free-stream
entropy and vorticity perturbations. This indicates that entropy and vorticity pertur-
bations can generate a slightly decaying mode;

3. The decaying mode also can be synchronized with an unstable discrete mode (second
Mack’s mode) leading to the following channel: vorticity/entropy decaying discrete
mode second mode.

These spectral features define the physics of boundary layer instabilities, and one must
explore the spectral properties in detail in order to understand the receptivity and instability
of high-speed boundary layers.

Almost all theoretical and computational studies of the stability of high-speed boundary
layers have used the calorically perfect gas model. Real gas effects and surface chemistry
bring many other parameters into consideration that can have a strong impact on the spec-
trum topology. There are a limited number of publications on the stability of boundary layers
including real gas effects [MA91, Stu91, SR94, CVM97, HCC97, JSC98, Ber98, Lyt03, LR05].
These studies provide insight into real gas effects in boundary layers of high-speed air.

Malik and Anderson [MA91] considered chemical equilibrium boundary layers in chemical
equilibrium high-speed air flow past a flat plate. Real gas effects were introduced through
mean flow gas properties, while the stability equations remained basically the same as in
the case of a perfect gas. They showed that real gas effects lead to thinner boundary layers
with a significantly lower maximum temperature than in the calorically perfect gas model.
The stability analysis indicated that real gas effects stabilize the first mode and destabilize
the second one. It was found that in real gases the peak of the second mode is shifted
to lower frequencies. Stuckert [Stu91] and Stuckert and Reed [SR94] explored the effects
of nonequilibrium chemical reactions in air on the stability of the boundary layer over a
cone at high Mach numbers. They also observed the frequency shift in the second mode
in both equilibrium and nonequilibrium air calculations. Chang et al.[CVM97] considered
flows in chemical equilibrium and nonequilibrium using the parabolized stability equations.
Hudson, Chokani, and Candler [HCC97] extended the stability analysis to flows in chemical
and thermal nonequilibrium. They found that thermal nonequilibrium may destabilize the
most unstable oblique first mode. In the considered examples, they did not observe a signif-
icant difference in the second mode computations using models of chemical equilibrium or
nonequilibrium flows. Johnson, Seipp, and Candler [JSC98] explored the effect of the free
stream total enthalpy on the stability of chemical and thermal nonequilibrium flows of air
and nitrogen. They showed that perturbations of concentrations have a significant impact on
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the stability of high enthalpy air. For the considered cases, they suggested that the total en-
thalpy effect in air is due to oxygen dissociation and that the dissociation leads to absorption
of the perturbation energy. Bertolotti [Ber98] studied the influence of rotational and vibra-
tional energy relaxation on boundary-layer stability. He showed that rotational relaxation
has a damping effect on high-frequency perturbations, whereas vibrational relaxation affects
the growth rates of perturbations by changing the mean flow. Lyttle [Lyt03] and Lyttle and
Reed [LR05] addressed the sensitivity of the stability analysis to the thermodynamic models,
reaction rates, and transport models. They found that the growth rate of the second mode
can be significantly affected by the chosen model of the chemically reacting air.

In order to assess the impact of real gas effects on stability and receptivity, we suggest
building simple knowledge blocks based on the analysis of such gases as nitrogen and oxygen
before moving on to the analysis of air. In the present work we consider the inviscid stability
of high-speed boundary layers in binary mixtures of oxygen and nitrogen.

4.2 The real gas model

We consider binary mixtures of oxygen and nitrogen assuming that they are in local thermal
equilibrium; that is, the translational, rotational and vibrational degrees of freedom are
associated with a single temperature. The reaction rates, thermodynamic properties and
transport properties are modeled following [GYTL90] . The mixtures are considered to be
mixtures of perfect gases. The enthalpy, h, and frozen specific heat at constant pressure,
Cpf , of a gas mixture can be determined if the molar fraction of each species, Xi, is known:

h =
∑

i

Xihi,

hi =

∫ T

Tref

Cp,idT +
(

∆hf
i

)

Tref

,

Cpf =
∑

i

XiCp,i, (4.1)

Cp,i =

(

∂hi

∂T

)

p

.

Here, hi and Cp,i are the enthalpy and specific heat of species i, respectively,and (∆hf
i )Tref

is the heat of formation of species i at temperature Tref . Units of the thermodynamic and
transport properties presented in this section are specified in the nomenclature. [GYTL90]
provides curve fits for hi and Cp,i as functions of the local temperature T.

The viscosity of the gas mixture is determined by the approximate formula

µ =
∑

i







Mi

NA
Xi

∑

j

Xj∆
(2)
ij






, (4.2)
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∆
(2)
ij =

16

5

(

1.5460× 10−20
)

[

2MiMj

πRunivT (Mi +Mj)

]1/2

πΩ̄
(2,2)
ij ,

where Mi is the molecular weight of species i, NA is Avogadro’s number, and Runiv is the
universal gas constant. The average collision cross section Ω̄

(2,2)
ij is a function of temperature

(the curve fit is given in [GYTL90]).
The frozen thermal conductivity Kf of the mixture is calculated according to

Kf = Ktr +Kint (4.3)

where Ktr is the translational component of the thermal conductivity and Kint is the compo-
nent of thermal conductivity associated with the internal excitation energy of the molecules.
They are given by

Ktr = 2.3901× 10−8 15

4
k
∑

i







Xi
∑

j

αijXj∆
(2)
ij






,

Kint = 2.3901× 10−8k
∑

i







Xi
∑

j

Xj∆
(1)
ij

(

Cp,i

Runiv

− 5

2

)






, (4.4)

αij = 1 +
[1− (Mi/Mj)] [0.45− 2.54 (Mi/Mj)]

[1 + (Mi/Mj)]
2 ,

∆
(1)
ij =

8

3

(

1.5460× 10−20
)

[

2MiMj

πRunivT (Mi +Mj)

]1/2

πΩ̄
(1,1)
ij ,

where k is the Boltzmann constant. Quantities Ω̄
(1,1)
ij and ∆

(1)
ij are functions of temperature.

Their curve fits are given in [GYTL90].
The binary diffusion coefficient Dij is evaluated according to the following equation:

Dij =
D̄ij

p
=

kT

p∆
(1)
ij

(4.5)

where ∆
(1)
ij is defined in Eq. (4.4).

The rate of oxygen dissociation is independent of the third body Mcat participating in
the collision. The oxygen dissociation reaction O2 +Mcat→← 2O+Mcat is associated with the

following forward and backward reaction rates k
(1)
f and k

(1)
b , respectively:

k
(1)
f = 3.61× 1018T−1.0 exp

(

−5.94× 104/T
)

, (4.6)

k
(1)
b = 3.01× 1015T−0.5.

The nitrogen dissociation rate depends on the third body. The reaction N2 +N2→← 2N +N2

has the reaction rates
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k
(2)
f = 1.92× 1017T−0.5 exp

(

−1.131× 105/T
)

, (4.7)

k
(2)
b = 1.09× 1016T−0.5,

while the reaction N2 +N →← 2N +N has the reaction rates

k
(3)
f = 4.15× 1022T−1.5 exp

(

−1.131× 105/T
)

,

k
(3)
b = 2.32× 1021T−1.5 ×Kcor, (4.8)

Kcor = 1.0155.

We introduce the correction factor, Kcor , in Eq. (4.8) in order to have the same equilibrium
constant for nitrogen dissociation when the third body is N2 or N , whereas the reaction
rates for nitrogen in [GYTL90] give different ratios k

(2)
f /k

(2)
b and k

(3)
f /k

(3)
b .

4.3 The mean flow problem

4.3.1 Governing equations

The two-dimensional mean flow profiles have been found numerically by solving the boundary-
layer equations for a reacting gas mixture [Dor62]:

∂ρu

∂x
+
∂ρv

∂y
= 0,

ρu
∂u

∂x
+ ρv

∂u

∂y
= −dpe

dx
+

∂

∂y

(

µ
∂u

∂y

)

, (4.9)

ρu
∂I

∂x
+ ρv

∂I

∂y
=

∂

∂y

[

µ

Pr

∂I

∂y
+ µ

(

1− 1

Pr

)

u
∂u

∂y

]

− ∂

∂y

[

(

1

Le
− 1

)

ρD12

∑

i

hi
∂ci
∂y

]

,

ρu
∂ci
∂x

+ ρv
∂ci
∂y

=
∂

∂y

(

ρD12
∂ci
∂y

)

+ Ẇi.

Here, pe is the pressure at the edge of the boundary layer; I = h+u2/2 is the total enthalpy;
Pr and Le are the Prandtl and Lewis numbers, respectively; D12 is the binary diffusion
coefficient; ci is the mass fraction of species i; and Ẇi is the net mass rate of production of
species i. The equation of state for the gas mixture is

p =
∑

i

ciRiρT (4.10)

where Ri = Runiv/Mi is the gas constant of species i.
In the case of a binary mixture of oxygen, the net mass production rate Ẇi in Eq. (4.10)

is given by
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Ẇ1 = −k(1)
f ρ2M1

c1
M1

(

c1
M1

+
c2
M2

)

+ k
(1)
b ρ3M1

c22
M2

2

(

c1
M1

+
c2
M2

)

, (4.11)

Ẇ2 = 2k
(1)
f ρ2M2

c1
M1

(

c1
M1

+
c2
M2

)

− 2k
(1)
b ρ3M2

c22
M2

2

(

c1
M1

+
c2
M2

)

.

In Eq. (4.11) and what follows, we use subscripts 1 and 2 for molecules and atoms, respec-
tively. For a binary mixture of nitrogen we have

Ẇ1 = −ρ2c1

(

k
(2)
f

c1
M1

+ k
(3)
f

c2
M2

)

+M1

(

c2
M2

)2

ρ3

(

k
(2)
b

c1
M1

+ k
(3)
b

c2
M2

)

, (4.12)

Ẇ2 = 2M2
c1
M1

ρ2

(

k
(2)
f

c1
M1

+ k
(3)
f

c2
M2

)

− 2M2

(

c2
M2

)2

ρ3

(

k
(2)
b

c1
M1

+ k
(3)
b

c2
M2

)

.

Rather than using the continuity equations for both species, we apply the total mass
conservation law and use only the continuity equation for atoms (or molecules).

The equations are transformed using the Levy-Lees-Dorodnitsyn transformation [Dor62]:

ψ (ξ, η) =

√
2ξ

pe

f (η, ξ) , (4.13)

ξ =

x
∫

0

ρeueµedx, η =
ρeue√

2ξ

y
∫

0

ρ

ρe

dy,

where subscript e indicates the value at the edge of the boundary layer. Using the stream
function ψ (ξ, η), one can find the streamwise velocity component

u = uef
′ (ξ, η) , (4.14)

where ’prime’ indicates the partial derivative with respect to η.
The transformed boundary layer equations are written as

(Cf ′′)
′
+ ff ′′ + βH

[

ρe

ρ
− (f ′)

2

]

= 2ξ

(

f ′∂f
′

∂ξ
− f ′′∂f

∂ξ

)

,

(

C

Pr
g′
)′

+ fg′ =
2ξ

Ie

dIe
dξ
gf ′ +

[

C

Sm

(

1

Le
− 1

)

∑

i

hicie
Ie

qi
′

]′

+
u2

e

Ie

[(

1

Pr
− 1

)

Cf ′f ′′

]′

+2ξ

(

f ′∂g

∂ξ
− g′∂f

∂ξ

)

,

2ξ

(

∂qi
∂ξ
f ′ − q′i

∂f

∂ξ

)

=

(

C

Sm
q′i

)′

+ q′if −
2ξ

cie

dcie
dξ

f ′ +
2ξẆi

ρρeu2
eµecie

, (4.15)
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βH =
2ξ

ue

due

dξ
, g (ξ, η) = I/Ie, qi = ci/cie, C =

ρµ

ρeµe

,

where Sm = µ/ρD12 is the Schmidt number. Equations (4.15) are to be solved subject the
following boundary conditions:

η = 0 : f = f ′ = 0; (4.16)

η →∞ : f ′ → 1, g → 1, qi → 1.

In addition to (4.16), we have to formulate boundary conditions at the wall for the species
mass fraction, ci, and the enthalpy (or temperature), g. The boundary condition on the
species mass fraction depends on the recombination rate at the wall [Dor62]. The boundary
condition on the enthalpy depends on the specific case under consideration. It can be de-
termined by specifying the wall temperature or the heat flux. In the case of the wall heat
flux being specified, one must take into account that the heat flux has contributions from
thermal conductivity and the species diffusion toward the wall [GYTL90, Dor62].

4.3.2 Numerical method

The computational domain in ξ and η is discretized, and a second-order finite-difference
approximation for Eqs. (4.15) similar to that found in [Ceb99] is utilized. The grid points
are defined as

ξ0 = 0, ξn = ξn−1 + kn, n = 1, 2, ..., N ; (4.17)

η0 = 0, ηj = ηj−1 + hj, j = 1, 2, ..., J,

where hj stands for the grid step size (not to be confused with enthalpy in sections 2 and 3).
For the binary mixture, we use

c1eq1 + c2eq2 = 1

Introducing the new dependent variables

q1 = Q1, q
′
1 = Q2, f = F1, f

′ = F2, f
′′ = F3, g = G1, g

′ = G2, (4.18)

the first-order equations are discretized and written for the midpoint
(

ξn, ηj−1/2

)

:

Qn
1j −Qn

1j−1

hj

=
Qn

2j +Qn
2j−1

2
≡ Qn

2j−1/2,
F n

1j − F n
1j−1

hj

=
F n

2j + F n
2j−1

2
≡ F n

2j−1/2, (4.19)

F n
2j − F n

2j−1

hj

=
F n

3j + F n
3j−1

2
≡ F n

3j−1/2,
Gn

1j −Gn
1j−1

hj

=
Gn

2j +Gn
2j−1

2
≡ Gn

2j−1/2.

Equations (4.15) are also discretized at the midpoint
(

ξn−1/2, ηj−1/2

)

. The numerical algo-
rithm is organized by solving the momentum equation and the equation of species conserva-
tion separately from the energy equation. That is, initial values for G1 and G2 are chosen
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and the five equations representing momentum and mass conservation are solved to obtain
F1, F2, F3, Q1, and Q2 based on the given G1 and G2 . New values G1 and G2 are than
found by solving the two equations representing energy conservation based on the values for
F1, F2, F3, Q1, and Q2 generated in the previous step. The new G1 and G2 are than used to
obtain updated values of F1, F2, F3, Q1, and Q2 from the momentum and mass conservation
equations. This iterative process is continued until a solution within a certain tolerance is
reached.

The nonlinear algebraic system of equations is solved using Newton’s iterations that lead
to a linear system of equations for the ”perturbation” of each function δQ(i−1) :

Q(i) = Q(i−1) + δQ(i−1), (4.20)

where index i indicates the iteration number. The algorithm leads to a block tridiagonal
structure of equations that can be expressed in matrix-vector form

A~δ = ~r, (4.21)

where the coefficient matrix A and the vector ~r are known. For example, Newton’s iterations
for the discretized equations for δF1, δF2, δF3, δQ1, and δQ2 lead to the following structure
of the algebraic system:

A =

















A0 C0

B1 A1 C1

. . . .
Bj Aj Cj

BJ−1 AJ−1 CJ−1

BJ AJ

















; (4.22)

−→
δ j =













δF1

δF2

δF3

δQ1

δQ2













;−→r j =













(r1)j

(r2)j

(r3)j

(r4)j

(r5)j













;

where the vector ~r is known from the previous iteration. MatricesAj, Bj, and Cj are 5 × 5
matrices. Their explicit form is given in [Ulk10]. The linear set of equations (4.21) is solved
using the block elimination method [Ceb99].

4.3.3 Some examples of the mean flow profiles

For the purpose of testing the boundary layer solver, we have considered examples corre-
sponding to the first and second Probstein’s integrals [Dor62].

If dIe/dx = 0, dcie/dξ = 0 , Pr = Sm = 1 , and Ẇ = 0 (frozen flow), the first Probstein’s
integral is
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Figure 4.1: Comparison of numerical results for mass fraction with the first Probstein inte-
gral.

qi = (qi)w +
1− (qi)w

1− gw

(g − gw) , (4.23)

where subscript w stands for values at the wall. Figure 4.1 shows a comparison of the
numerical results with the solution given by Eq. (4.23) for a binary mixture of oxygen
in the boundary layer past a flat plate at the edge velocity, pressure and temperature of
ue = 2km/s , pe = 0.01atm , and Te = 3000K, respectively. The edge mass fractions were
chosen according to the equilibrium state of the mixture, and gw = 0.8. The length scale is
H =

√
2ξ/ (ρeue).

If due/dx = 0 , dcie/dξ = 0 , Sm = 1 , and Ẇ = 0 (frozen flow), the second Probstein’s
integral is

qi = (qi)w + [1− (qi)w] f ′. (4.24)

A comparison of the numerical results with the second Probstein’s integral is shown in Fig.
4.2. One can see good agreement between the numerical results and Probstein’s integrals.

Another test is illustrated by Figs. 4.3 and 4.4, where the self-similar solution was
computed by solving a system of ordinary differential equations (4.20) for a boundary layer
past a flat plate at Mach number M = 2 , edge temperature Te = 300K , and Prandtl number
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Figure 4.2: Comparison of numerical results for mass fraction and the second Probstein’s
integral.

65



Figure 4.3: Comparison of the velocity profile with the self-similar solution.

Pr = 0.7. In order to compare the results from the new solver with the self-similar solution for
a non-reacting calorically perfect gas, we adjusted the formulation in the new solver to have
a constant Prandtl number and to consider a gas with constant specific heat. Additionally,
we let the viscosity be given by Sutherland’s viscosity as a function of temperature.

4.4 Inviscid stability analysis. Governing equations

and numerical method

4.4.1 Governing equations

We consider three-dimensional perturbations in a two-dimensional boundary layer flow using
the quasi-parallel flow approximation. The linearized governing equations in the inviscid
limit can be written as follows:

ρ
∂u′

∂t
+ ρu

∂u′

∂x
+ ρv′

du

dy
+
∂p′

∂x
= 0, (4.25)

ρ
∂v′

∂t
+ ρu

∂v′

∂x
+
∂p′

∂y
= 0, (4.26)
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Figure 4.4: Comparison of the temperature profile with the self-similar solution.

67



ρ
∂w′

∂t
+ ρu

∂w′

∂x
+
∂p′

∂z
= 0, (4.27)

∂ρ′

∂t
+ u

∂ρ′

∂x
+ ρ

∂u′

∂x
+ ρ

∂v′

∂y
+ v′

dρ

dy
+ ρ

∂w′

∂z
= 0, (4.28)

ρ
∂I ′

∂t
− ∂p′

∂t
+ ρu

∂I ′

∂x
+ ρv′

dI

dy
= 0, (4.29)

ρ
∂c′i
∂t

+ ρu
∂c′i
∂x

+ ρv′
dci
dy

= Ẇ ′
i , (i = 1, 2) , (4.30)

where ‘prime’ indicates a perturbation. For a binary mixture, c′1 + c′2 = 0 , one can find

Ẇ ′
1 = ρc′1

(

∂Ẇ1

∂ρ1

− ∂Ẇ1

∂ρ2

)

+ ρ′

(

∂Ẇ1

∂ρ1

c1 +
∂Ẇ1

∂ρ2

c2

)

+
∂Ẇ1

∂T
T ′, (4.31)

p′ = c′1ρT (R1 −R2) + ρ′RT + ρRT ′, (4.32)

I ′ = c′1 (h1 − h2) + T ′Cpf + uu′, (4.33)

Cpf =

(

c1
dh1

dT
+ c2

dh2

dT

)

.

The solution of the linearized equations is considered in the form of normal modes

q′ (x, y, z, t) = q̂ (y) exp [i (αx+ βz − ωt)] , (4.34)

and we arrive at the following system of ordinary differential equations:

i (αu− ω) ρ̂+ iρ (αû+ βŵ) + ρ
dv̂

dy
+ v̂

dρ

dy
= 0, (4.35)

iρ (αu− ω) û+ ρv̂
du

dy
+ iαp̂ = 0, (4.36)

iρ (αu− ω) v̂ +
dp̂

dy
= 0, (4.37)

iρ (αu− ω) ŵ + iβp̂ = 0, (4.38)

iρ (αu− ω) Î + iωp̂+ ρv̂
dI

dy
= 0, (4.39)

iρ (αu− ω) ĉ1 + ρv̂
dc1
dy

= ĉ1A1 + ρ̂B1 + C1T̂ , (4.40)
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A1 = ρ

(

∂Ẇ1

∂ρ1

− ∂Ẇ1

∂ρ2

)

, B1 =

(

∂Ẇ1

∂ρ1

c1 +
∂Ẇ1

∂ρ2

c2

)

, C1 =
∂Ẇ1

∂T
.

Similar to the inviscid stability analysis in non-reacting gases, one can derive from Eqs.
(4.35) – (4.40) a single equation for the pressure perturbation:

F1p̂− F2
dp̂

dy
+
d2p̂

dy2
= 0, (4.41)

F1 =
(αu− ω)2

RT
−
(

α2 + β2
)

− (R1 −R2)

R

ρB1

RT

(αu− ω)2

D1

−
[

(αu−ω)2

T
+ (R1−R2)G1

R
(αu−ω)2

D1

]

[

D1 − ρ
RT
B1 (h1 − h2)

]

[(h1 − h2)G1 +D1Cpf ]
,

F2 =
2α

(αu− ω)

du

dy
− (R1 −R2)

D1R
iρ (αu− ω)

dc1
dy

−
[

1

T
− G1R1

D1R

]

[(

dI
dy
− udu

dy

)

D1 − iρ (αu− ω) (h1 − h2)
dc1
dy

]

[(h1 − h2)G1 +D1Cpf ]
,

D1 = iρ (αu− ω) + ρ
(R1 −R2)

R
B1 − A1,

G1 = C1 −B1
ρ

T
,

where A1, B1, and C1 are defined by Eq. (4.40).
Also similar to the stability analysis of non-reacting gases, for the numerical solving of

the stability equations we use a system of two differential equations written in dimensionless
form:

dp̂

dȳ
= F12v̂, (4.42)

dv̂

dȳ
= F21p̂+ F22v̂,

where the pressure perturbation is scaled by ρeu
2
e , and the velocity perturbation is scaled

by ue . The dimensionless coordinate ȳ = y/δ is defined with the help of a length scale δ
(usually we use the length scale δ = H =

√
2ξ/ (ρeue) or δ = Hbl =

√
ξ/ (ρeue)). Coefficients

F12 , F21 , and F22 are given by

F12 = −i ρ
ρe

(

αδ
u

ue

− ωδ

ue

)

,
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F21 = −i
(

αδ
u

ue

− ωδ

ue

)







ρeu
2
e

pe

− (R1 −R2)

R
Q1 −

Te

T
S1 −

ρe

ρ

(

(αδ)2 + (βδ)2)

(

αδ u
ue
− ωδ

ue

)2






,

F22 = i

(

αδ
u

ue

− ωδ

ue

)







(R1 −R2)

R
Q2 +

Te

T
S2 −

iαδ
(

αδ u
ue
− ωδ

ue

)2

du/ue

dȳ
+ i

ρe

ρ
(

αδ u
ue
− ωδ

ue

)

dρ/ρe

dȳ






,

Q1 =
b11a22 − a12b21
a11a22 − a12a21

,Q2 =
b12a22 − a12b22
a11a22 − a12a21

,

S1 =
b21a11 − a21b11
a11a22 − a12a21

,S2 =
b22a11 − a21b12
a11a22 − a12a21

,

a11 = i

(

αδ
u

ue

− ωδ

ue

)

+
δB1

ue

(R1 −R2)

R
− ρe

ρ

δA1

ueρe

,

a12 = −ρe

ρ

δTeC1

ρeue

+
δB1

ue

Te

T
, a21 =

(

αδ
u

ue

− ωδ

ue

)(

h1

Ie
− h2

Ie

)

,

a22 =

(

αδ
u

ue

− ωδ

ue

)

TeCpf

Ie
,

b11 =
ρeu

2
e

pe

δB1

ue

, b12 = −dc1
dȳ

,

b21 =

(

αδ
u

ue

− ωδ

ue

)

ρeu
2
e

ρIe
, b22 = i

(

d (I/Ie)

dȳ
− u2

e

Ie

u

ue

d u
ue

dȳ

)

.

In order to arrive at the eigenvalue problem, one must formulate homogeneous boundary
conditions for Eqs. (4.42)

ȳ →∞ : p̂→ 0; (4.43)

ȳ = 0 : v̂ = 0 (or dp̂/dȳ = 0).

4.4.2 Numerical method

In the present work we consider the stability of boundary layers in the temporal framework.
In this case, α and β are real parameters and the complex frequency ω is found as an
eigenvalue. Inviscid analysis requires using a path of integration in the complex plane ȳ that
is below the critical point yc defined by the equation of the critical layer [Mac65]:

u (yc) = c,
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where c = ω/α is the complex phase velocity. In the numerical stability analysis of the
inviscid equations for perturbations in non-reacting boundary layer flow, Mack [Mac65] used
four terms in the Taylor series in order to determine the velocity and temperature profiles
of the mean flow at complex yc. The same approach was used in [FT10]. For the present
analysis of reacting real gas flow, this approach is not realistic because of the complexity of
the equations for the mean flow. In addition, many thermodynamic properties of the mixture
are determined using curve fitting, which prevents finding higher derivatives with acceptable
accuracy. Therefore, we restrict ourselves by considering only unstable perturbations (ci =
Im(c) > 0) and using the integration path along the real axis ȳ.

We use the fourth-order Runge-Kutta method with a constant step size to solve Eqs.
(4.42) starting outside the boundary layer at ȳmax and integrating toward the wall. Outside
the boundary layer, the coefficient F22 in Eqs. (4.42) is equal to zero, and one can find

p̂ (ȳ) ∼ exp (λȳ) ,

λ =
√

F12 (ȳmax)F21 (ȳmax),Re (λ) < 0.

For the purpose of code testing, we reproduce results from [FT10] for a non-reacting,
calorically perfect gas. Figure 4.5 illustrates a comparison for a two-dimensional perturbation
(β = 0) . In order to compare with the results of [FT10], we must enforce properties of a
calorically perfect gas on the coefficients of Eqs. (4.42).

4.5 Inviscid stability analysis. Numerical examples for

reacting binary mixtures

4.5.1 Oxygen

In the present work, we are interested in studying the impact of real gas effects on flows in
thermal equilibrium. In this sense, the work is aligned with [MA91]. Rather than solving
a complete set of ordinary differential equations including thermal conductivity, diffusivity,
and viscosity for perturbations in a boundary layer of equilibrium air, we begin with an
inviscid analysis and consider binary mixtures of chemically reacting boundary-layer flows.
In all examples, we consider two-dimensional perturbations with β = 0.

The first example is the equilibrium free stream flow of oxygen at zero pressure gradient
at pressure pe = 0.01 atm, edge velocity ue = 4.273 km/s, and edge temperature Te = 2000
K. The edge parameters in the binary mixture of oxygen correspond to the frozen Mach
number M = 5.2. In this example, we consider an adiabatic and non-catalytic wall. The
plate length is equal to 2 m, and the total enthalpy of the free-stream flow is 11 MJ/kg. The
total enthalpy is approximately the same as in [JSC98] (9.31 MJ/kg) where the boundary-
layer flow of air was considered and a total enthalpy effect was observed. Figures 4.6 and
4.7 illustrate a comparison of the velocity and temperature profiles of the reacting gas with
the self-similar solution for non-reacting gas flow with specific heat ratio 1.4. In agreement
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Figure 4.5: Comparison of the growth rates of the present work and Ref. [FT10] for a
non-reacting calorically perfect gas.
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Figure 4.6: Comparison of the velocity profiles in real and perfect gases.

with observations of [MA91], one can see that the thickness of the boundary layer in a real
gas is smaller and that there is a dramatic effect on the temperature profile.

In order to examine the influence of real gas effects on the stability equations, we consider
coefficients F1 and F2 in Eq. (4.41). In the absence of a mass fraction perturbation and
assuming a calorically perfect gas, F1 has the following limit:

F1 =
M2
(

Ū − c
)2

T̄
− 1, (4.44)

where Ū = u/ue and T̄ = T/Te. Figure 4.8 shows the real part of the coefficient F1 for a
reacting gas, for a calorically perfect gas using Eq. (4.44) with the velocity and temperature
profiles for the real gas mean flow, and according to Eq. (4.44) with the velocity and
temperature profiles for a non-reacting gas. Although there are some differences depending
on the gas model used for the coefficient F1, the curves have the same qualitative behavior.
To evaluate the impact of real gas effects on the coefficient F2 in Eq. (4.41), we consider

F3 = F2 −
2

(

Ū − c
)

dŪ

dȳ
. (4.45)

In the case of a non-reacting and calorically perfect gas, F3 = −T̄ ′/T̄ . Figure 4.9 illustrates
the difference between reacting and non-reacting gases for the coefficient F3. Qualitatively,
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Figure 4.7: Comparison of nthe temperature profiles in real and perfect gases.
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Figure 4.8: Effect of the real gas flow on the coefficient F1 on Eq. (4.41).

the behavior of the coefficient is the same for both gas models. These comparisons indicate
that the structure of the spectrum should be qualitatively the same.

Figure 4.10 shows the imaginary part ci versus α. One case shown in Fig. 10 corresponds
to integration with 4000 intervals in the boundary layer on the interval [0,14.23]; the other
case corresponds to 8000 intervals. This illustrates that the result is independent of the step
size used in integration. One can see the typical structure of the spectrum having the first
and the second modes (the reader can find details regarding the terminology in [FT10]).

Figure 4.11 shows a comparison of ci for a real gas and a calorically perfect gas. One
can see that real gas effects stabilize the first mode and destabilize the second mode. This
phenomenon was noted in [MA91]. It was interpreted as the result of wall cooling due to
real gas effects. However, interpretation of the result as a pure temperature effect might be
incorrect as we will see in our discussion of the results for nitrogen in the following section.

The typical eigenfunctions for mode 1 and mode 2 are shown in Figs.4.12 and 4.13 as
the magnitude of the pressure perturbation. The shapes of these eigenfunctions are similar
to those observed for non-reacting gases [Mac69].

The real gas effects appear in the governing stability equations as non-calorically perfect
gas properties, as changes in the mean velocity and temperature profiles, and as the presence
of perturbations of the species mass fractions. If we exclude the equation for mass fraction
perturbations from the governing equations, the eigenvalues are changed as shown in Fig.
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Figure 4.9: Effect of the real gas flow on the coefficient F3 on Eq. (4.45).
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Figure 4.10: Comparison of ci for two different step sizes used in integration.
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Figure 4.11: Comparison of ci for real gas and calorically perfect gas.
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Figure 4.12: Pressure distribution across the boundary layer for mode 1.
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Figure 4.13: Pressure distribution across the boundary layer for mode 2.
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Figure 4.14: Pressure distribution across the boundary layer for mode 2.

4.14. However, the spectrum structure remains qualitatively the same. This result agrees
with studies of the free-stream total enthalpy effect in [JSC98]. In addition to modes 1
and 2 that are subsonic (the external flow in the frame moving with the phase speed of
the perturbations is subsonic), Fig. 4.14 also shows two supersonic perturbations found in
this study. As was pointed out by Mack [Mac69], the supersonic perturbations have a much
smaller growth rate than the second mode has. Chang et al. [CVM97] also found unstable
supersonic discrete modes in boundary-layer flows of air within the parabolized stability
equations framework.

The effect of mass fraction perturbations on the stability of the binary mixture of oxygen
in Fig. 4.14 was obtained within the temporal stability framework. In the spatial framework,
we observe the same phenomenon (see Fig. 4.15 where the imaginary part of the streamwise
wave numbers is shown as a function of frequency).

In the next example, we consider the effect of wall cooling on the inviscid two-dimensional
perturbations. The wall temperature is Tw = 1000 K, and the mass fraction of atoms on the
wall is c2w = 0. One can see from Fig. 4.16 that cooling destabilizes the second mode as is
known from studies of non-reacting gases. There is not a strong effect on the first mode at
the chosen flow parameters.
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Figure 4.15: Pressure distribution across the boundary layer for mode 2.
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Figure 4.16: Pressure distribution across the boundary layer for mode 2.
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Figure 4.17: Temperature profiles in binary mixtures of oxygen and nitrogen.

4.5.2 Nitrogen

In order to compare stability characteristics of nitrogen and oxygen, we consider an equi-
librium free stream flow of a binary mixture of nitrogen at the same conditions chosen for
oxygen: pressure pe = 0.01 atm, edge velocity ue = 4.273 km/s, and edge temperature
Te = 2000 K. The edge parameters correspond to the frozen Mach number M = 4.9. In
order to explain the differences in these two examples (binary mixture of oxygen and bi-
nary mixture of nitrogen), Figs. 4.17 and 4.18 show the temperature and mass fraction of
molecules in the boundary layers. One can see that the temperature in the oxygen mixture
is lower than in the binary mixture of nitrogen due to dissociation.

One could expect that the lower temperature of the wall should destabilize the second
mode as was illustrated in Fig. 4.11 by comparison of the results for a perfect gas with
results for a binary mixture. However, in the present case, the second mode in nitrogen is
more unstable (see Fig. 4.19). This means that an interpretation of the real gas effects on
the second mode may be more complicated than simply a pure temperature effect. In the
present example, profiles of specific heats of oxygen and nitrogen in the boundary layers are
qualitatively different. Figure 4.20 shows the distribution of the frozen specific heats, Cpf ,
in boundary layers of oxygen and nitrogen. One can see the qualitative difference: while the
specific heat of nitrogen increases in the vicinity of the wall due to the temperature effect,
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Figure 4.18: Molecular mass fractions in binary mixtures of oxygen and nitrogen.
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Figure 4.19: Comparison of ci for boundary layers in nitrogen and oxygen.

the specific heat of oxygen is affected by dissociation near the wall. This could be the reason
for the stabilizing effect on the binary mixture of oxygen in comparison with the binary
mixture of nitrogen.

Because there is no significant dissociation in nitrogen, there is no difference between the
results with and without mass fraction perturbations in the stability equations (Fig. 4.21).

Figures 4.22 and 4.23 illustrate coefficients F1 and F3 in Eqs. (4.41) and (4.45), respec-
tively, for the case of nitrogen at α = 0.23, c = 0.914 + i0.023. One can see that they have
the same qualitative behavior as in the case of oxygen presented in Figs. 4.8 and 4.9.

4.6 Conclusion

The considered examples of boundary layer flows in binary mixtures of oxygen and nitrogen
indicate that the real gas effects stabilize the first mode and destabilize the second one in the
inviscid limit of the stability equations (see [FT10] regarding the terminology). The result
is in agreement with [MA91] where this observation was made for boundary layer flow for
air in chemical and thermal equilibrium with the stability equations including the effect of
viscosity, diffusivity, and thermal conductivity. Real gas effects lead to a decrease in wall
temperature and can have an impact on the perturbations similar to the wall cooling effect
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Figure 4.20: Comparison of frozen specific heats in the binary mixtures of oxygen and
nitrogen.
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Figure 4.21: Comparison of ci for boundary layer in nitrogen when perturbations of mass
fractions are included/excluded in the stability equations.
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Figure 4.22: Coefficient F1 in Eq. (4.41). Nitrogen. α = 0.23, ci = 0.914 + i0.023.
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Figure 4.23: Coefficient F3 in Eq. (4.45). Nitrogen. α = 0.23, ci = 0.914 + i0.023.
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in boundary layers of non-reacting, calorically perfect gases. However, such an interpretation
of the wall temperature effect might be misleading when binary mixtures of nitrogen and
oxygen are compared. In the considered example, nitrogen does not experience significant
dissociation, whereas oxygen goes through dissociation. The difference leads to qualitative
differences in the specific heats, and the second mode in nitrogen is more unstable than the
second mode in oxygen in spite of the higher wall temperature.

The analysis of the coefficients in the Eq. (4.41) for pressure perturbations in the inviscid
limit indicates that the coefficients qualitatively have the same structure as in the case of non-
reacting calorically perfect gases. Thus, the conclusions about multiple unstable eigenmodes
in high-speed boundary layers should be applicable to the considered examples of reacting
boundary layers.

The inviscid stability analysis can be helpful in understanding the structure of the spec-
trum due to the simplicity of the governing equations. Because there is a limited number of
studies examining reacting boundary layers, it should be useful to initially explore the real
gas effects in binary mixtures of oxygen and nitrogen before moving on to the five species
model of air. The present work demonstrates only a small sampling of examples of the flow
conditions, and studies considering a broader range of flow parameters are still required.
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Chapter 5

Flow instabilities and transition

This chapter is based on the article [Tum10]

5.1 Introduction

The first study of laminar-turbulent transition was carried out by [Rey83] who attributed
the phenomenon to flow instability. The importance of the problem for design of laminar
wings for commercial aircraft, prediction of viscous drag and heating of the surface of a
hypersonic vehicle and for many other technical applications stimulated broad theoretical
and experimental studies of flow instabilities. Today, one can find a vast bibliography on
stability and transition of shear flows ([DR81, SH01, CJJ67]). There are a variety of paths
to turbulence depending on the level of free-stream disturbances and also the nature of
disturbances introduced into the flow from a wall (for example, isolated and distributed
roughness). There are also different mechanisms governing the flow instability. In order to
develop and use a reliable tool for transition prediction, one has to be familiar with the broad
picture of the transition phenomenon. A short article in the Encyclopedia cannot provide
all the necessary details on the problem. Our goal is to provide an introduction to the flow
instability concept focusing on the Tollmien-Schlichting mechanism in boundary layers and
to outline how the knowledge about this mechanism can be used for transition prediction.
Other mechanisms such as Görtler and cross-flow mechanisms are discussed in in the books
cited above, as well as the review papers [RS89, Flo91, Sar94a], and [SRW03] on these topics.
We skip the discussion of free shear layers (mixing layers and wakes) that are also important
in technical applications.
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5.2 Stability analysis of two-dimensional flows

5.2.1 Outline of the linear stability theory

For simplicity, consider a two-dimensional flow of an incompressible fluid governed by the
Navier-Stokes equations. In the Cartesian coordinates, the equations are written as follows:

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(

∂2u

∂x2
+
∂2u

∂y2

)

(5.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(

∂2v

∂x2
+
∂2v

∂y2

)

where u (x, y, t) and v (x, y, t) are x− and y− velocity components, respectively; p (x, y, t) is
the pressure; ρ is the density; and ν is the kinematic viscosity. We assume that the flow field
can be presented as the sum of a basic steady flow and a perturbation:

u = U (x, y) + u′ (x, y, t) , v = V (x, y) + v′ (x, y, t) , p = P (x, y) + p′ (x, y, t) (5.2)

After substituting the decomposed velocities and the pressure in equations (5.1) and sub-
tracting equations for the basic flow, we arrive at a system of nonlinear equations for per-
turbations u′, v′, and p′. In the linear stability analysis, the nonlinear terms are neglected
assuming that the amplitude of the perturbations is small.

∂u′

∂x
+
∂v′

∂y
= 0

∂u′

∂t
+ U

∂u′

∂x
+ v′

∂U

∂y
+ u′

∂U

∂x
+ V

∂u′

∂y
= −1

ρ

∂p′

∂x
+ ν

(

∂2u′

∂x2
+
∂2u′

∂y2

)

(5.3)

∂v′

∂t
+ U

∂v′

∂x
+ u′
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∂x
+ v′

∂V

∂y
+ V

∂v′
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= −1

ρ

∂p′
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+ ν

(

∂2v′

∂x2
+
∂2v′

∂y2

)

In a parallel flow such as a fully developed channel flow, the mean velocity profile U = U (y),
V = 0, and so the underlined terms in equation (5.3) are absent. Boundary-layer and
free shear layers (mixing layer and far wake) are not parallel. However, these flows can be
considered in the first approximation as quasi-parallel because there is a significant difference
in the length scales. There is a length scale, L, associated with the weak dependence of the
mean velocity profiles on the streamwise coordinate x. Another length scale is the boundary-
layer thickness (thickness of the mixing layer or wake) δ. At high Reynolds numbers, δ/L ∼
1/Reδ ¿ 1, where Reδ is the Reynolds number based on δ and characteristic velocity (for
example, velocity at the edge of the boundary layer, Ue). The y− velocity component of
the mean flow, V , has the order of magnitude Ue/Reδ, and U ∼ Ue. In addition, the length
scale of the perturbation, λ, usually has the same order of magnitude as the boundary-layer
thickness (LÀ λ ≥ δ). As a result of the scale differences, the underlined terms in equations
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Figure 5.1: A mechanical system having two degrees of freedom

(5.3) are neglected in the first approximation when we study the stability of boundary and
free shear layers. In this case, the local coordinate x in the mean flow velocity profile,
U (x, y), is treated as a parameter. In other words, the quasi-parallel flow approximation
deals with the local velocity profiles that are considered parallel on the scale having an order
of magnitude λ.

The quasi-parallel flow approximation leaves us with a system of partial (linear) differen-
tial equations. A rigorous mathematical analysis requires the formulation of the initial and
boundary conditions for the perturbations and even once these are formulated, the prob-
lem may remain challenging. In practical applications, we are not interested in the solution
of specific initial-value problems. The main questions of interest are: 1. Is the flow sta-
ble/unstable? 2. What are the unstable modes? 3. Are the unstable modes amplified in the
flow and how much?

At this point, we should address the normal modes concept. The simplest illustration of
the normal modes concept is the mechanical system shown in figure 5.1. The system has two
masses m connected by a spring of stiffness k. The masses are also attached to the walls by
springs. The system has two normal modes of vibration: Mode 1 has frequency ω = (k/m)1/2

when the masses oscillate in phase, whereas mode 2 has frequency ω = (3k/m)1/2, and the
displacements of the masses are shifted in π. It is known that any vibration of the system
can be presented as a sum of these normal modes. The study of the normal modes provides
information about the properties of the system. In order to find the amplitudes and phases
of each mode, we have to address a specific initial-value problem for the system.

In hydrodynamic stability analysis, the normal mode concept suggests considering simple
wave-like solutions in the complex form as q′ (x, y, t) = q̃ (y) exp (iαx− iωt), where q̃ (y) is
a complex amplitude function. The idea is the same as in the example of the mechanical
system: instead of solving a specific physical initial and boundary value problem, we look
at the normal modes existing in the system, expecting that the solution of the initial and
boundary value problem for the partial differential equations (5.3) can be presented as a sum
of the normal modes. If there is an unstable mode, one can expect that the mode will also
be present in the solution of a specific physical problem (in a real experiment or in direct
numerical simulation) and that the mode can be observed (perhaps after a space or time delay
required for sufficient amplification of the mode). The main difference between the simple
mechanical system and perturbations in a fluid is that the continuum medium has an infinite
number of degrees of freedom. As result, one can arrive at a enumerable discrete spectrum
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or at a continuous spectrum, or at a combination of discrete and continuous spectra.
Following the normal modes concept, the solution of equations (5.3) is sought in the form

(u′, v′, p′) = (ũ, ṽ, p̃) exp (iαx− iωt) (5.4)

and the system of the partial differential equations is reduced to a system of ordinary differ-
ential equations (ODEs) for the amplitude functions.

iαũ+
dṽ

dy
= 0

i (αU − ω) ũ+ ṽ
dU

dy
= − iα

ρ
p̃+ ν

(

d2ũ

dy2
− α2ũ

)

(5.5)

i (αU − ω) ṽ = −1

ρ

dp̃

dy
+ ν

(

d2ṽ

dy2
− α2ṽ

)

Although we use the symbol of an ordinary derivative dU/dy in the second equation, in the
case of weakly non-parallel flows we use the velocity profile at a chosen coordinate x that is
considered as a parameter.

The normal modes are described by the complex amplitude functions that provide am-
plitudes and phases depending on the coordinate y. Similarly to the spring-mass problem
discussed above, solution of the linearized Navier-Stokes equations can be presented as an
expansion into the normal modes.

The system of equations (5.5) can be recast as one ODE of the fourth order for the
amplitude function ṽ:

(αU − ω)
(

ṽ′′ − α2ṽ
)

− αṽU ′′ = −iν
(

ṽiv − 2α2ṽ′′ + α4ṽ
)

(5.6)

where (...)′ stands for d/dy, and ṽiv = d4ṽ/dy4. Usually, a perturbation of streamfunction
ϕ (y) exp (iαx− iωt) is introduced (ṽ = −iαϕ), and the equation (5.6) is written in dimen-
sionless form (using the characteristic length scale δ and the velocity scale Ue) as follows:

(αU − ω)
(

ϕ′′ − α2ϕ
)

− αϕU ′′ =
1

iReδ

(

ϕiv − 2α2ϕ′′ + α4ϕ
)

(5.7)

This is the famous Orr-Sommerfeld equation in hydrodynamic stability theory. One may
compare the Orr-Sommerfeld equation with the system of ODEs (5.5) written using the
primitive variables (velocity components and pressure). Equation (5.7) requires the second
derivative of the mean flow profile, whereas equations (5.5) contain only the first deriva-
tive. Because theoretical studies historically had been linked to equation (5.7), there is a
misunderstanding that stability analysis of low speed boundary layers requires the second
derivative U ′′.

Equation (5.7) (or equations (5.5) ) require boundary conditions. On a solid wall, the
no-slip boundary condition must be satisfied:

ũ = ϕ′ = 0, ṽ = −iαϕ = 0 (5.8)
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In the case of an unbounded domain (as in boundary-layer flow), one may require bound-
edness of the solution outside the boundary layer. One can find a solution that decays
outside the boundary layer (ũ, ṽ, p̃ → 0), and there is also the option that the solution is
bounded but does not decay (having an oscillating character along coordinate y). The first
case corresponds to the discrete spectrum, and the second option leads to the continuous
spectrum. The solutions from the continuous spectrum can be associated with perturbations
in the free stream. For example, turbulence in the free stream may be associated with a
normal mode of the continuous spectrum. In the case of a compressible gas, acoustic and
entropy perturbations in the free stream can be presented by the continuous spectrum.

In what follows, our main interest will be associated with modes of the discrete spectrum
because these include the unstable modes. In order to clarify the origin of the discrete
spectrum, consider equation (5.7) outside the boundary layer, where the dimensionless mean
flow velocity U = 1. At y → ∞, the Orr-Sommerfeld equation becomes an equation with
constant coefficients

(α− ω)
(

ϕ′′ − α2ϕ
)

=
1

iReδ

(

ϕiv − 2α2ϕ′′ + α4ϕ
)

(5.9)

and one can easily find four linear independent solutions

ϕ1 = exp (−αy) , ϕ2 = exp (+αy) , ϕ3 = exp (−γy) , ϕ4 = exp (+γy) (5.10)

γ =
√

α2 + iReδ (α− ω)

To be specific, we chose real parts of α and λ to be positive. Therefore, only two linear
independent solutions ϕ1 and ϕ3 decay outside the boundary layer. The decaying solution
can be written as a sum

ϕ (y) = C1ϕ1 (y) + C3ϕ3 (y) (5.11)

where constants C1 and C3 are unknown. One can continue ϕ1 and ϕ3 into the boundary
layer numerically and try to find the constants C1 and C3 from the wall boundary conditions
(5.8). However, one of the constants can be chosen arbitrarily because the equation is linear.
The choice of the constant will affect the normalization of solution (5.11) only. The other
constant can be found from a boundary condition on the wall, whereas the second wall-
boundary condition still cannot be satisfied. Only a special choice of parameters α, ω, and
Reδ can lead to the solution satisfying both boundary conditions (5.8). This is the discrete
spectrum obeying a dispersion relation:

ω = ω (α,Reδ) or α = α (ω,Reδ) (5.12)

At this point, the normal mode analysis leads to an ambiguity that can be readily found in
the literature. In the general case, we may consider the wave number, α = αr + iαi, and
frequency, ω = ωr + iωi as complex numbers. Very often two formulations are mentioned:
temporal and spatial theories.

In the temporal stability theory, αi = 0 and αr is considered as a parameter, while the
complex number ω is found from the dispersion relation (5.12). According to the normal
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mode presentation, the solution depends on time as exp(−iωt) = exp(−iωrt + ωit). At
ωi > 0, the solution is unstable (it grows exponentially in time), and it decays at ωi < 0 (the
solution is neutral at ωi = 0).

In the spatial theory, ωi = 0 and ωr is considered as a parameter, while the complex
number α is found from the dispersion relation (5.12). Now, the amplitude of the solution
depends on the coordinate x as exp(iαx) = exp(iαrx−αix). At αi < 0, the amplitude grows
exponentially downstream, and the perturbation decays downstream at αi > 0.

The reader can find an ambiguity in the literature within the choice of temporal or spatial
formulation in the stability problems. Usually, the spatial formulation is recommended as
more suitable for analysis of experimental data. The ambiguity has its origin at the step
when the solution of the partial differential equations is suggested in the form of the normal
modes (5.4). At this point, the link with the initial and boundary value problem for a specific
experimental setup is lost, and we have the artificial dilemma of spatial versus temporal
formulations.

[Gus79] solved an initial value problem for a perturbation in an incompressible boundary
layer. [SG81] proved that Gustavsson’s solution is an expansion into the modes of discrete
and continuous spectra in the temporal formulation. [AR90] considered the signaling problem
when a periodic-in-time point source introduces perturbations through the wall starting at
t = 0. They showed that the solution of the initial and boundary value problem can be
presented (after some time when the transient effect is smeared out) as an expansion into
the modes of discrete and continuous spectra in the spatial formulation. Therefore, the
analysis of a specific initial boundary value problem for PDEs leads to a unique expansion
of the solution into normal modes without any ambiguity. Usually experiments deal with
disturbance source like in the signaling problem, and the spatial framework should be used
for analysis of the data.

5.2.2 Blasius boundary-layer flow

The neutral stability curve for a Blasius boundary layer flow (section refeae012) is shown in

figure 5.2, where F = 2πfν/U 2
e (f is the dimensional frequency) and Re = (Uex/ν)

1/2.
Figure 5.2 illustrates the remarkable two-fold role of viscosity. The flow is stable at low

Reynolds numbers due to the viscous dissipation. The flow is also stable at large Reynolds
numbers. This means that the underlying instability mechanism is viscous (see a discussion
in section 5.2.4). The unstable modes having a viscous nature are called Tollmien-Schlichting
(TS) waves to honor the theoretical studies of W. Tollmien and H. Schlichting in the late
1920s and the early 1930s (see the references in [SG00]). Their theoretical predictions were
confirmed by the experiments of [SS43]. Stability experiments require quiet wind tunnels and
high accuracy of measurements. The reader can find a number of useful data and description
of recent experiments in review papers [Sar94b] and [Sar07].

The imaginary part of the wave numbers (in the spatial formulation) are shown in fig-
ure 5.3 as functions of the Reynolds number at the frequency parameters F = n × 10−5

(n = 1,. . .,5). The Blasius length scale LB = (νx/Ue)
1/2 is used in the definition of the

dimensionless wave number.
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Figure 5.2: Neutral stability curve for Blasius boundary layer flow in the quasi-parallel flow
approximation.

Figure 5.3: Imaginary part of the wave numbers versus the Reynolds number for Blasius
boundary layer flow. The numbers n = 1, 2, 3, 4, and 5 indicate the frequency parameters
F = n× 10−5.
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Figure 5.4: Amplitude distributions for streamwise velocity perturbation at F = 5× 10−5.

A typical streamwise velocity profile of the TS waves in a Blasius boundary layer is shown
in figure 5.4 at F = 5 × 10−5 at two Reynolds numbers, where the dimensionless distance
from the wall is defined using the Blasius length scale, η = y/LB. A comparison of the
velocity profiles in figure 5.4 illustrates the non-parallel flow effect: the shape of the velocity
profiles depends on the distance from the leading edge. One can consider an experiment
where velocity perturbations are measured using a hot wire. One can see from figure 5.4
that the measured growth (decay) of the perturbation will depend on the location of the
hot wire within the boundary layer. In addition to quantitative corrections required when
the nonparallel flow effects are taken into account, the perturbation growth rate will depend
on the measured quantity. For example, one may consider amplification measured for the
inner or outer maxima in the velocity profile. The nonparallel flow effects in incompressible
flows were studied using the method of multiple scales by [Bou72, Gas74]; [SN75, SN77]; and
[PN79]. Figure 5.5 illustrates the neutral curves ([Gas74]) defined for the inner and outer
maxima of the streamwise velocity profile in a TS wave. The Reynolds number in figure
5.5 is defined using the displacement thickness δ∗. Experimental studies of non-parallel flow
effects are discussed by [Sar07].

5.2.3 The Falkner-Skan profiles. The pressure gradient effect

The Falkner-Skan boundary layer flow is characterized by the edge velocity Ue(x) = Cxm.
In this case, it is common to use the Hartree parameter β = 2m/(m+1) (section refeae012).
Stability analyses have shown that a favorable pressure gradient (β > 0) stabilizes, and an
unfavorable pressure gradient (β < 0) destabilizes the boundary layer flow. [DR81] collected
data for the critical Reynolds numbers (minimal Reynolds numbers on the neutral curve)
of Falkner-Skan profiles from [OML69] and plotted them as function of the shape factor
H = δ∗/θ, where θ is the momentum thickness. Figure 5.6 reproduces the plot from [DR81].
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Figure 5.5: Neutral stability curves for Blasius boundary layer flow (Gaster, 1974. Repro-
duced by permission of Cambridge University Press). Solid line quasi-parallel flow approx-
imation; dash line inner maximum of |u|; dash-dot line outer maximum of |u|.

Figure 5.6: The values of the minimal critical Reynolds number (based on the displacement
thickness) for the Falkner-Skan family of boundary profiles (Drazin and Reid, 1981).
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5.2.4 The Rayleigh equation and structure of the TS wave at high
Reynolds numbers

In the limit of high Reynolds numbers, the solution of the Orr-Sommerfeld equation can be
considered in a rigorous way using the method of matched asymptotic expansions ([Smi79,
SB80, BS81, ZR83]). In the following discussion, we are using a simplified structure of the
solution at high Reynolds numbers in order to outline the main ideas ([Gra66, Eag69, DR81,
SH01]).

In the limit αReδ →∞, one can ignore the viscous terms in equation (5.7). The inviscid
approximation is the Rayleigh equation:

(U − c)
(

ϕ′′ − α2ϕ
)

− ϕU ′′ = 0 (5.13)

where c = ω/α is the phase velocity. One can expect that the viscous terms are still significant
in the vicinity of the wall (viscous sublayer) in order to satisfy the no-slip boundary condition.
In addition, equation (5.13) is singular in the vicinity of the point yc, where U (yc) = c (critical
layer). The viscous terms are significant in the vicinity of the critical layer as well. In order
to find an estimate of the viscous sublayer thickness δvs, we compare the order of magnitude
of the viscous term having the highest derivative with the order of magnitude of the term
(U − c)ϕ′′ at y → 0:

(U − c)ϕ′′ ∼ cϕ′′ ∼ cϕ/δ2
vs,

1

αReδ

ϕiv ∼ ϕ

αReδδ4
vs

(5.14)

These terms are balanced when δvs ∼ (αcReδ)
−1/2. In order to estimate the thickness of the

critical layer, we consider a balance of the same terms at y → yc.

(U − c)ϕ′′ ∼ U ′
cϕδc
δ2
c

,
1

αReδ

ϕiv ∼ ϕ

αReδδ4
c

(5.15)

where U ′
c is the derivative at the critical point. A balance of the terms requires δc ∼

(αU ′
cReδ)

−1/3. There are two possibilities. The critical layer can be close to the wall and
overlap with the viscous sublayer. In this case, the viscous effects are significant in the
vicinity of the wall only. Such a structure corresponds to the asymptotic behavior of the
lower branch of the neutral curve. Another possibility is when the critical layer and viscous
sublayer are separated, and there is an inviscid region between the viscous layers. This
structure corresponds to the upper branch of the neutral curve.

In order to shed some light onto the nature of the viscous instability mechanism, let us
consider a neutral perturbation with α > 0 corresponding to the upper branch of the neutral
curve. One can easily derive from the Rayleigh equation the following result:

d

dy
(ϕ̄ϕ′ − ϕϕ̄′) = 0 (5.16)

(ϕ̄ϕ′ − ϕϕ̄′) = 2i Im (ϕ̄ϕ′) = const
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where bar stands for complex conjugation.
In order to understand the physical meaning of (ϕ̄ϕ′ − ϕϕ̄′), consider the Reynolds stress

that the neutral perturbation generates in the boundary layer.

τ = − 1

T

T
∫

0

u∗ (x, y, t) v∗ (x, y, t) dt (5.17)

T = 2π/ω

The velocity components u∗ (x, y, t) and v∗ (x, y, t) are presented using the complex stream
function as follows

u∗ (x, y, t) = Re
[

ϕ′ei(αx−ωt)
]

, v∗ (x, y, t) = Re
[

−iαϕei(αx−ωt)
]

(5.18)

After substitution of (5.18) into integral (5.17), one can find the Reynolds stress

τ = −αi
4

[ϕ̄ϕ′ − ϕϕ̄′] =
α

2
Im (ϕ̄ϕ′) (5.19)

Using equation (5.16), we conclude that the Reynolds stress is constant within the inviscid
regions at αReδ → ∞. Because the eigenfunction corresponding to the TS wave decays at
y →∞, we conclude that the Reynolds stress τ = 0 in the inviscid region above the critical
layer. The Reynolds stress also has to be constant within the inviscid region between the
viscous sublayer and the critical layer, and the sign of τ is very important. In order to have
energy production, τ must be positive.

We can explore the sign of τ using an approximate solution of the Orr-Sommerfeld equa-
tion in the vicinity of the wall. The leading term is determined by the solution of the
following equation:

−ωϕ′′ =
1

iReδ

ϕiv (5.20)

Equation (5.20) was obtained from equation (5.7) when the highest derivatives are kept in
viscous and inviscid terms at y → 0. The no-slip boundary conditions on the wall are as
follows:

ϕ (0) = ϕ′ (0) = 0 (5.21)

The solution of the equation satisfying the boundary conditions can be easily found (linear
independent solution exp(+qζ) has to be excluded):

ϕ = e−qζ + qζ − 1 (5.22)

q =
1− i√

2
, ζ = y(ωReδ)

1/2

In the limit ζ →∞ (outer limit of the inner solution) we find,

ϕ ∼ qζ − 1 (5.23)
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Figure 5.7: Sketch of the Reynolds stress distribution across the boundary layer in the high
Reynolds number limit when the viscous sublayer and critical layer are separated (upper
branch of the neutral curve). 1 viscous sublayer; 2 inviscid region; 3 critical layer; 4
inviscid region.

Substitution of the result into (5.19) gives the Reynolds stress outside of the viscous sublayer.

τ =
α
√
ωReδ

2
√

2
(5.24)

A sketch of the asymptotic Reynolds stress structure is shown in figure 5.7. It is important
that τ is positive. In other words, the viscous sublayer provides a phase shift between
the streamwise, u∗ (x, y, t), and normal, v∗ (x, y, t), velocity components leading to τ > 0
(energy production). In the case of the neutral perturbation, one can show that the energy
production between the critical and viscous sublayer is balanced by the energy dissipation
within the viscous sublayer ([ZT87]).

5.2.5 The Rayleigh theorem

Using the Rayleigh equation, one can establish the following Rayleigh theorem ([DR81,
SH01]): A necessary condition for inviscidly unstable flow is the existence of an inflection
point U ′′ (y∗) = 0. The Rayleigh theorem provides a necessary but not a sufficient condition.
It is interesting to compare neutral curves for Blasius boundary layer flow with neutral curves
for boundary layers with an unfavorable pressure gradient when the velocity profile has an
inflection point. A sketch of the neutral curves is shown in figure 5.8 ([Pan05]). Other typical
examples of inviscidly unstable flows are mixing layers and wakes. Examples of their stability
analysis are presented in books by [SH01], and [CJJ67]. Although U ′′ is not required for
the stability analysis (section 5.2), an inflection point indicates a possibility for the inviscid
mechanism of the flow instability.

Inviscid stability analysis of a mixing layer becomes very simple in the case when the
wave length of the perturbation is much larger than the mixing layer thickness (λ À δ).
In this limit, one may consider two uniform streams having velocities U1 and U2. The

103



Figure 5.8: General shape of the neutral stability curve for a Blasius boundary layer and for
layers with adverse pressure gradient (Panton, 2005).

slip surface is the sheet vortex of uniform density. The stability analysis includes finding
perturbations of the velocity potential in the uniform streams. The pressure perturbations
and normal velocities of particles at the disturbed interface are to be equal on both sides.
These conditions lead to a simple result for the complex phase velocity

c =
1

2
(U1 + U2)±

i

2
|U2 − U1| (5.25)

Sign “+” in equation (5.25) corresponds to unstable mode. The result means that sheet
vortex is unstable. This is the Kelvin-Helmholtz instability (see [Bat03, Pan05]). Compu-
tational studies of mixing layers demonstrate that the finite thickness δ ≈ λ stabilizes the
flow. However, the flow is always unstable in the limit λÀ δ when U1 6= U2.

5.2.6 Three-dimensional perturbations

The normal mode analysis in the case of three-dimensional perturbations includes depen-
dence on the spanwise coordinate z. Three velocity components and pressure perturbations
are sought in the form

(u′, v′, w′, p′) = (ũ, ṽ, w̃, p̃) exp (iαx+ iβz − iωt) (5.26)

After substitution of (5.26) into linearized Navier-Stokes equations, one can derive a system
of ODEs for the amplitude functions (ũ, ṽ, w̃, p̃) similar to equation (5.5). One can also
derive one ODE of the fourth order for the amplitude function ṽ:

(U − c)
(

ṽ′′ −
(

α2 + β2
)

ṽ
)

− ṽU ′′ =
1

iαReδ3D

(

ṽiv − 2
(

α2 + β2
)

ṽ′′ +
(

α2 + β2
)2
ṽ
)

(5.27)

[Squ33] found that one can transform the equation into the form of an Orr-Sommerfeld
equation for two-dimensional disturbances:

α2D =
√

α2 + β2, α2DReδ2D = αReδ3D (5.28)
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Transformation (5.28) is the Squire transformation leading to the two-dimensional form of
the Orr-Sommerfeld equation:

(U − c)
(

ṽ′′ − α2
2Dṽ
)

− ṽU ′′ =
1

iα2DReδ2D

(

ṽiv − 2α2
2Dṽ

′′ + α4
2Dṽ
)

(5.29)

Using the temporal framework of the stability analysis, one can say the following about
three-dimensional perturbations ([Squ33]): “if any velocity profile is unstable for a partic-
ular value of Reynolds’ number, it will be unstable at a lower value of Reynolds’ number
for two-dimensional disturbances.” Squire’s transformation does not have a straight-forward
spatial formulation; it leads to complex values of Reδ2D that defy simple physical inter-
pretation. And, in fact, one can find (at low frequencies) that the lower branch of the
neutral curve for three-dimensional perturbations can be be shifted upstream with respect
to the neutral curve for two-dimensional perturbations. However, the overall amplification
of two-dimensional disturbances is larger than the amplification of the three-dimensional
perturbations having the same frequency. Although the fact is often interpreted as a re-
sult of the Squire transformation, this is not quite correct. In contrast, three-dimensional
disturbances are more amplified in supersonic boundary layers.

5.3 Receptivity of boundary layers

Having introduced the normal modes concept in section 5.2.1, we pointed out that the
analysis of the normal modes is missing a link with the PDEs and the physical initial and
boundary value problem. In other words, the normal mode analysis substitutes solving a
real physical problem with studies of some elements of the bases (eigenfunctions), omitting a
discussion of what their weights might be in a physical setup. (This problem is often called
the receptivity problem). It had been understood by the mid-1970s that the instability of
flow is only one element of the laminar-turbulent transition scenario. [Mor69] and [Res76]
clarified the important role of the receptivity problem in the laminar-turbulent transition
process. These papers motivated intensive investigations of various mechanisms responsible
for the excitation of unstable TS waves. The vast bibliography on the topic is presented
in [Cho98, SRK02, CJJ67, Fed03]; and [Tum06b, Tum07]. For our further discussion it is
important to keep in mind that the receptivity issue is a significant element in the formulation
of a physics-based transition prediction.

5.4 Paths to turbulence in wall layers

Before a discussion of possible scenarios for laminar-turbulent transition, we have to point
out that the previous sections were aimed at modes that can be unstable and lead to the
transition. However, this concept is not adequate for the whole spectrum of experimental
observations. For example, the Couette flow and Hagen-Poiseuille flow in a circular pipe are
stable, though one can observe in experiments a laminar-turbulent transition in these flows.
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There are also examples when a transition to turbulent flow can be triggered at Reynolds
numbers lower than the critical value predicted by the stability theory. These observations
indicate that there are other routes in transition to turbulence aside from amplification of the
instability modes. One of the possible mechanisms of transition to turbulence is associated
with the transient growth phenomenon.

Small perturbations in a stable shear flow can have a significant transient amplification
before they die out in accordance with the stability theory prediction. A pair of counter-
rotating streamwise vortices in a boundary layer illustrates the transient growth phenomenon.
The vortices redistribute the streamwise momentum by lifting up slow fluid particles from the
wall and bringing down the high-speed particles toward the wall. Although the streamwise
vortices decay downstream, the cumulative effect of the momentum redistribution can be
significant, and one can observe the streaky structures in boundary layers. In turn, the
transiently growing perturbations can lead to a flow structure that is unstable with respect
to other small perturbations, serving as a path to turbulence without the presence of unstable
modes (non-modal path to transition). One can find bibliographies on theoretical studies of
this phenomenon in [SH01], and [ZTR06]. The transient growth phenomenon can be observed
in experiments with an array of roughness elements placed on the wall ([Whi02, FBTC04,
WRE05, EW06, DW08]). The transient growth phenomenon has been studied extensively
using theoretical, experimental, and computational methods in recent years because of its
potential application for transition prediction ([Res01, RT04, RT06].

Professor E. Reshotko ([RT06]) analyzed possible paths in transition to turbulence and
summarized the contemporary understanding in the diagram shown in figure 5.9. It is impor-
tant to point out that the path to turbulence depends on the level of external disturbances.
Depending on the environment (noisy wind tunnel, flight in a quiet atmosphere, flow in a
turbine etc), different paths can have different values at particular conditions, and a physics-
based transition prediction has to take into account the variety of mechanisms.

Despite the variety of the transition mechanisms, they all lead to nonlinear flow dynamics
at the final stage of the flow breakdown. Historically, the following transition scenarios have
been distinguished: the K-regime (after [KTS62]), the subharmonic- (also known as N- or
H-) regime discovered by [KKL77], and the oblique transition studied by [FTB93, BLH94],
and others. Discussions of the nonlinear mechanisms in transition scenarios can be found
in [Kac94], and [SH01]. Recent experimental and computational studies indicate that these
different mechanisms are the same at the late stages of the transition ([SFK00]). Experiments
in a circular pipe flow ([HTW00]) also demonstrate that the late stage of transition is similar
to transition in boundary layers.

5.5 Transition prediction: modal growth scenario (path

A)

The laminar-turbulent transition depends on many factors, and prediction of the “transition
point” is a challenging task. Because the phenomenon depends on external forcing (free
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Figure 5.9: Paths to turbulence in wall layers (Reshotko and Tumin, 2006).

stream turbulence, acoustic noise, roughness induced perturbations etc), transition predic-
tion suffers uncertainty related to the flow conditions. The level of perturbations (and their
spectrum) in wind tunnels might be different from flight conditions, and one cannot use wind
tunnel experiments for transition prediction in a flight. However, if the transition path is de-
termined, one can work on a physics-based transition prediction method. Consider transition
on a smooth surface due to low-level free stream perturbations (path A in figure 5.9). The
main stages of the transition are: receptivity, linear amplification of TS waves, and nonlinear
breakdown. As follows from experiments in quiet wind tunnels and their comparisons with
the linear stability theory, a significant part of the transition region can be described by the
linear stability theory, and the length of the nonlinear region is relatively short. Comparison
of experimental data with the theoretical results (see, for example, [ZT87]) indicates that the
nonlinear dynamics of perturbations become significant when the velocity of the perturba-
tion achieves about 1% of the free stream velocity. Therefore, one can assume that there is a
threshold amplitude ε∗ associated with the laminar-turbulent transition (amplitude criterion
of transition). Let’s assume that we know the spectrum of the free stream perturbations,
ε∞(f), and the receptivity coefficient K(f) such that the amplitude of the unstable wave at
the neutral point, xnp, can be found as εTS(f) = K(f)ε∞(f). The linear amplification of
the perturbation can be predicted by the factor exp(−

∫ x

xnp
αi dx). Therefore, the “transition

point,” xtr can be estimated from the amplitude criterion:

ε∗ = K(f)ε∞(f) exp(−
∫ xtr

xnp

αi dx) (5.30)

Equation (5.30) can be recast as follows:
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Figure 5.10: N -factors for the Blasius boundary layer flow (quasi-parallel flow approxima-
tion).

N(xtr) = ln

[

ε∗
K(f)ε∞(f)

]

(5.31)

N(xtr) ≡ −
∫ xtr

xnp

αi dx

Because the effects of the unknown factors, K(f)ε∞(f), are smoothed by the logarithm, one
can try to correlate N(xtr) for different flow conditions (noisy/quiet wind tunnels, flight,
etc). This is the underlying concept of the eN method transition prediction ([vI56, Smi59]).
Figure 5.10 illustrates the N -factors for the Blasius boundary layer in the quasi-parallel
approximation.

Because the nonparallel flow effect can have a significant impact on the growth rate,
the contemporary applications of the eN method are based on the Parabolized Stability
Equations (PSE) introduced by [HB87] (see also [Ber91, Her97]). In the PSE method, one
has to solve a system of parabolized equations using a downstream marching algorithm. The
approach allows capturing the nonparallel flow effects in the leading term without additional
steps as required in the method of multiple scales. The reader can find a bibliography and
examples on the eN method’s application in [HLRA96, JC99, JC05];[AC00, SRW03, CCN01];
[Cha03, Cha04]; and [CC05].

5.6 Conclusion

This brief discussion demonstrates that transition to turbulence is a complex phenomenon.
It depends on a variety of factors (free-stream disturbances, perturbations originated on the
wall etc) that might be beyond our control. Therefore, the designer of laminarized aircrafts
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has to deal with the uncertainties and to distinguish different mechanisms responsible for
the flow transition.
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Chapter 6

Toward the foundation of a global
(bi-global) modes concept

This section is based on the invited talk at the fourth symposium on Global Flow Instability
and Control [Tum09].

6.1 Introduction

Recent progress in using global (bi-global) modes for the analysis of a variety of complex
(and “simple”) flows led to their applications in flow control. The progress in computational
capabilities brings this advanced technique to common practice in studies of flow pertur-
bations [The03, EG05, ÅEGH08, RT08, BÅBH09, BHHS09]. However, the formulation of
global eigenvalue problems is accompanied by some uncertainties in the choice of boundary
conditions over a 2D domain. The choice of boundary conditions has a heuristic nature, and
this provokes questions regarding the suitable formulation of the eigenvalue problems. In
this note, I would like to suggest a simple model that can help us understand the effect of
the upstream and downstream boundary conditions on the eigenvalues and eigenfunctions,
and possible limitations of the global formulation. Originally, my idea was to link the global
stability analysis of simple flows (such as a flat plate boundary layer) with the conventional
quasi-parallel analysis based on the Orr-Sommerfeld equation. The analysis of a weakly non-
parallel flow has been carried out in [ÅEGH08]. A comprehensive analysis of the upstream
and downstream boundary conditions’ effect on the spectrum of parallel boundary-layer flow
was carried out in [RT08]. These explorations shed some light onto the representation of
discrete TS modes within the “box formulation.” However, because the underlying complex-
ity of the 2D eigenvalue problem demands significant computational power, there is a lack
of understanding of the qualitative features of this advanced formulation. As we know, the
initial-value problem in a parallel boundary layer flow can be presented as an expansion into
normal modes of discrete and continuous spectra [Gus79, SG81]. What can happen when
we approach the problem using the “box formulation”? What can we get rid of completely,
and what are possible constraints on the perturbations under consideration?
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6.2 A model

To make the model as transparent as possible, I suggest beginning with the initial-value
problem in a uniform incompressible flow (U∞ = const). The solution of this problem can
be found analytically using the Laplace transform in time and Fourier transform in x- and
y- directions. There are no discrete normal modes, and the solution can be presented as an
expansion into the vorticity modes of the continuous spectrum. For a given streamwise wave
number, α, and transversal wave number, k, the vorticity modes have complex frequency
ω = α − i (k2 + α2) /R, where R is the Reynolds number based on the free stream velocity,
U∞, and on the appropriate length scale L. Let’s address the known problem using the
“box formulation” for a 2D domain: x = [−Lx, Lx] , y = [−Ly, Ly]. It is still a challenging
problem if we use advanced computational tools to shed some qualitative light onto the effect
of the boundary conditions on the 2D normal modes. In order to elucidate the features of
using the “box formulation”, let’s consider a case when Ly À Lx. In the limit of the “tall”
box, we arrive at a consideration of the strip x = [−1, 1] , y = (−∞,+∞) (Lx is the length
scale). The limit allows Fourier transform in y similarly to analysis in [Tum03], in which the
strip of uniform flow with inhomogeneous upstream and downstream boundary conditions
for perturbations was considered. Here, we use the same model of perturbations in a strip of
uniform flow, but we formulate homogeneous boundary conditions at x = −1, and x = +1.

The linearized Navier-Stokes equations can be written in the matrix-vector form:

ikA− iωHtA = H1A + H2
dA

dx
,

where Ht,H1, and H2 are 4×4 matrices. Vector A = (u, p, v,Ω)T is comprised of the pressure
perturbation p, x- and y- velocity components u and v, respectively; Ω = ∂u/∂y − ∂v/∂x.
The solution of the system of ODEs with constant coefficients can be written in the form:

A =
4
∑

j=1

CjZj exp (λjx), where

λ1 = −k, λ2 = k,λ3 =
1

2

(

R−
√

4k2 +R2 − 4iRω
)

, λ3 =
1

2

(

R +
√

4k2 +R2 − 4iRω
)

,

Z1 =

(

i,−ik + iω

k
, 1, 0

)T

,Z2 =

(

−i, ik − iω
k

, 1, 0

)T

,

Z3 =

(

2ik

−R +
√

4k2 +R2 − 4iRω
, 0, 1,

R
(

R− 2iω −
√

4k2 +R2 − 4iRω
)

−R +
√

4k2 +R2 − 4iRω

)T

,

Z4 =

(

− 2ik

R +
√

4k2 +R2 − 4iRω
, 0, 1,−R

(

R− 2iω +
√

4k2 +R2 − 4iRω
)

R +
√

4k2 +R2 − 4iRω

)T

.

The first and the second fundamental solutions can be interpreted as “pressure waves” (they
have zero vorticity and non-zero pressure). The third and the fourth fundamental solutions
can be interpreted as “vorticity waves” (they have zero pressure and non-zero vorticity). The
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coefficients Cj are determined from the boundary conditions. The box formulation delivers
the pressure perturbation. The downstream and upstream pressure waves are localized within
the layers having an order of magnitude∼ 1/ |k|. In order to have a reasonable approximation
of the unbounded domain, one has to consider perturbations having the characteristic scale
ly ¿ 1, and to keep in mind that the solution is affected by the boundary conditions within
the layers x ≈ [−1,−1 + ly] and x ≈ [1− ly, 1]. At finite k and RÀ 1, one can find:

λ3 ≈ iω − k2 + ω2

R
, λ4 ≈ R− iω.

The third fundamental solution represents a vorticity mode propagating with the flow and
slowly decaying due to the viscosity. The forth fundamental solution represents a vorticity
perturbation stemming from the right boundary (x = 1) and localized within the layer of
thickness O (1/R).

6.3 An example of “global” modes with the Dirichlet

boundary conditions

Consider an example of the boundary conditions:

u (−1) = v (−1) = 0; u (1) = v (1) = 0.

Homogeneous boundary conditions lead to a dispersion relation ω = ω (R, k). The dispersion
relation can be written in the form:

∆ (k,R, ω) = −2k
√

4k2 +R2 − 4iRωCosh (R) +

k
√

4k2 +R2 − 4iRωCosh
(

2k −
√

4k2 +R2 − 4iRω
)

+

k
√

4k2 +R2 − 4iRωCosh
(

2k +
√

4k2 +R2 − 4iRω
)

+

2
(

−2k2 + iRω
)

Sinh (2k) Sinh
(√

4k2 +R2 − 4iRω
)

= 0

The eigenvalues can be found as roots of ∆ (k,R, ω) = 0. One can also approach the problem
directly by using the spectral collocation method (SCM) for the system of ODEs. Figure
6.1 illustrates the spectrum when parameter k is varied (obtained using Mathematica) and
results obtained using SCM at k = 2 and 5.

It is worth mentioning that the lines in Fig. 6.1 are skewed at their tips similarly to
global spectra [see Fig. 2 in [ÅEGH08]]. In the unbounded domain, the continuous spectrum
represented by the vorticity modes corresponds to a straight line in the complex plane ω. In
the case of the box formulation, the tips of the modes correspond to small k, and they are
affected by the boundary conditions. Figure 6.2 illustrates streamwise velocity perturbation
in mode 2, k = 5. It is tempting to say that the temporal global modes also reflect the
spatial amplification, but such a statement apparently is irrelevant to the physical problem,
and is a pure effect of the downstream boundary condition.
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Figure 6.1: Comparison of SCM
results with results obtained using
Mathematica.

Figure 6.2: Streamwise velocity per-
turbation in mode 2, k = 5.

6.4 Preliminary conclusions

1. Assuming that the 2D eigenvalue problem leads to a complete set of eigenfunctions,
we should not discuss how “wrong” or “correct” the boundary conditions are in the
“box formulation.” The discussion should address the appropriateness of the set of
eigenfunctions for the specific problem.

2. The “box formulation” introduces artifacts such as upstream pressure and vorticity
waves. There is a boundary layer within the downstream boundary of the domain. The
pressure wave penetrates upstream at a distance of approximately the characteristic
scale of the perturbation in the y direction. In order to have the physical picture
unaffected by the boundary conditions, size of the box should be chosen depending on
the typical scales of the perturbations under consideration.

3. The spatial growth of velocity perturbation within a global mode does not necessarily
mean that the mode captures a spatial amplification associated with the convective
instability.
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Chapter 7

Conclusions

A comprehensive study of stability of hypersonic boundary layers has been carried out under
the support from the Air Force Office of Scientific Research, USAF under grant FA9550-08-
1-0332 monitored by Dr. J. D. Schmisseur.

The main results of the project:

• The multimode decomposition technique may serve as a tool for gaining insight into
the flow dynamics in the presence of perturbations belonging to different modes. In the
past, one could compare DNS results with theoretical prediction for the unstable mode
only far downstream from an actuator where the unstable mode dominates the total
signal. Using the biorthogonal eigenfunction system, one can compare DNS results
with theoretical predictions for the unstable and stable modes in the vicinity of the
actuator as well.

• In Ref. [TWZ07] and in the present work, we have found that the multimode decom-
position requires a more elaborate analysis within the point of synchronism of mode
F with the continuous spectrum. Therefore, an extension of the theoretical model of
Ref. [FK01] to the case of continuous spectrum is required.

• The structure of the discrete spectrum in stability analysis of high-speed boundary
layers depends on basic flow parameters such as the Mach number, Prandtl number,
Reynolds number etc. The spectrum may have two unstable modes that are easily
associated with inviscid instabilities of Macks first and second modes. With another
choice of the basic parameters, the spectrum may have only one unstable mode having
two maxima of the growth rate.

• Terminology introduced by Mack [Mac69] using modes 1 and 2 (the well-known first and
second modes) is inconsistent with a proper mathematical treatment of normal modes.
Macks family of solutions is actually what should be called a normal mode, whereas
his definitions of first-mode amplified solutions and second-mode amplified/damped
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solutions lead to confusion when normal modes are used to represent a solution of the
linearized Navier-Stokes equations.

• The considered examples of boundary layer flows in binary mixtures of oxygen and
nitrogen indicate that the real gas effects stabilize the first mode and destabilize the
second one in the inviscid limit of the stability equations (see [FT10] regarding the
terminology). The result is in agreement with [MA91] where this observation was made
for boundary layer flow for air in chemical and thermal equilibrium with the stability
equations including the effect of viscosity, diffusivity, and thermal conductivity. Real
gas effects lead to a decrease in wall temperature and can have an impact on the
perturbations similar to the wall cooling effect in boundary layers of non-reacting,
calorically perfect gases. However, such an interpretation of the wall temperature effect
might be misleading when binary mixtures of nitrogen and oxygen are compared. In
the considered example, nitrogen does not experience significant dissociation, whereas
oxygen goes through dissociation. The difference leads to qualitative differences in the
specific heats, and the second mode in nitrogen is more unstable than the second mode
in oxygen in spite of the higher wall temperature.

• The “box formulation” used in global (bi-global) stability analysis introduces artifacts
such as upstream pressure and vorticity waves. There is a boundary layer within
the downstream boundary of the domain. The pressure wave penetrates upstream at a
distance of approximately the characteristic scale of the perturbation in the y direction.
In order to have the physical picture unaffected by the boundary conditions, size of
the box should be chosen depending on the typical scales of the perturbations under
consideration.
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Appendix A

Appendices to Chapter 2

A.1 Comparison of DNS mean velocity and tempera-

ture profiles with the self-similar solution. Com-

parison of eigenvalues α = αr + iαi obtained using

DNS and self-similar profiles.
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Figure A.1: Self-similar solution (solid line) and DNS results (symbols) for the mean velocity
profile U(y).
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Figure A.2: Derivative dU/dy: solid line - self-similar solution, symbols - DNS.

Figure A.3: Derivative d2U/dy2: solid line - self-similar solution, symbols - DNS.
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Figure A.4: Mean temperature profile T (y): solid line - self-similar solution, symbols - DNS.

Figure A.5: Derivative dT/dy: solid line - self-similar solution, symbols - DNS.
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Figure A.6: Derivative d2T/dy2: solid line - self-similar solution, symbols - DNS.

Figure A.7: Comparison of αr obtained using DNS and self-similar velocity and temperature
profiles. Solid line - self-similar profiles; symbols - DNS profiles.
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Figure A.8: Comparison of αi obtained using DNS and self-similar velocity and temperature
profiles. Solid line - self-similar profiles; symbols - DNS profiles.
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